Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phạm ngọc hân

Câu 1.Cho P=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

a, Rút gọn P

b,Tìm GTNN của P.\(\sqrt{x}\)

Câu 2.Cho pt: x2- mx - 4 = 0

Chứng minh: \(\dfrac{2\left(x_1+x_2\right)+7}{x_1^2+x_2^2}\ge-\dfrac{1}{8}\forall m\)

DƯƠNG PHAN KHÁNH DƯƠNG
3 tháng 6 2018 lúc 11:14

Câu 1 :

\(P=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Câu 2 :

Ta có :

\(\Delta=m^2+16>0\)

\(=>\) phương trình có 2 nghiệm phân biệt .

Theo định lý vi-ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=-4\end{matrix}\right.\)

Thay vào ta được :

\(\dfrac{2m+7}{m^2+8}\ge-\dfrac{1}{8}\)

\(\Leftrightarrow16m+56\ge-m^2-8\)

\(\Leftrightarrow m^2+16m+64\ge0\)

\(\Leftrightarrow\left(m+8\right)^2\ge0\) ( đúng )


Các câu hỏi tương tự
Thanh Linh
Xem chi tiết
Dương Tuyên
Xem chi tiết
Uyên
Xem chi tiết
Hoàng Duy Khánh Phan
Xem chi tiết
Bánh Mì
Xem chi tiết
Tô Cường
Xem chi tiết
sky12
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Hoàng Nam
Xem chi tiết