Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ILoveMath
Xem chi tiết
黃旭熙.
5 tháng 9 2021 lúc 17:09

Check lại đề, sai đề rồi nhé, thay a=-2, b=1, c=0 không thoả mãn nhé.

黃旭熙.
5 tháng 9 2021 lúc 17:20

Thay đề bằng ab+bc+ca=1 thì hợp lý hơn.

Bé Poro Kawaii
Xem chi tiết
Wineres
15 tháng 5 2021 lúc 17:47

\(\text{f(x)}\)\(\text{>0}\)\(\text{⇔}\)\(\text{2x}\)2\(\text{-3x+1}\)\(>0\)\(\left\{{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)

x(;\(\dfrac{1}{2}\))(1;+)

 

ILoveMath
Xem chi tiết
Eren
19 tháng 1 2022 lúc 22:43

Bài 1: 

a) Áp dụng bđt Cô - si:

\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge\dfrac{2}{b}\)

Tương tự với 2 phân thức còn lại của vế trái rồi cộng lại, ta có:

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

=> đpcm

Bài dù a + b + c = 2021 hay 1 số bất kì thì bđt luôn \(\ge\dfrac{3}{2}\). Bạn có thể tham khảo bđt Nesbitt

Minh Hiếu
19 tháng 1 2022 lúc 22:54

Bài 2:

\(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{2021-\left(b+c\right)}{b+c}+\dfrac{2021-\left(c+a\right)}{c+a}+\dfrac{2021-\left(a+b\right)}{a+b}\)

\(=2021\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)-3\)

Áp dụng BĐT Svacxo, ta có

\(P\) ≥ \(\dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu"=" ⇔ ...

Lê Phương Mai
19 tháng 1 2022 lúc 23:06

Sau khi đã đi tham khảo 7749 người thì đã cho ra một kết quả:v

Bài 2. \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(P=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1-3\)

\(P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(P=\dfrac{(2a+2b+3c)( \dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b})}{2}-3 ≥ \dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu `"="` xảy ra:

\(\Leftrightarrow \begin{cases} a=b=c\\ a+b+c=2021 \end{cases} \)

\(\Leftrightarrow a=b=c=\dfrac{2021}{3}\)

Vậy \(min \) \(P=\dfrac{3}{2}\) khi \(a=b=c=\dfrac{2021}{3}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
9 tháng 10 2023 lúc 23:10

a) \(A = \left\{ {a \in \mathbb{Z}| - 4 < a <  - 1} \right\}\)

A là tập hợp các số nguyên a thỏa mãn \( - 4 < a <  - 1\).

\( - 4 < a <  - 1\) có nghĩa là: a là số nguyên nằm giữa \( - 4\) và \( - 1\). Có các số \( - 3; - 2\).

Vậy \(A = \left\{ { - 3; - 2} \right\}\)

b) \(B = \left\{ {b \in \mathbb{Z}| - 2 < b < 3} \right\}\)

B là tập hợp các số nguyên b thỏa mãn \( - 2 < b < 3\).

\( - 2 < b < 3\) có nghĩa là: b là số nguyên nằm giữa \( - 2\) và \(3\). Có các số \( - 1;0;1;2\).

Vậy \(B = \left\{ { - 1;0;1;2} \right\}\)

c) \(C = \left\{ {c \in \mathbb{Z}| - 3 < c < 0} \right\}\)

C  là tập hợp các số nguyên c thỏa mãn \( - 3 < c < 0\).

\( - 3 < c < 0\) có nghĩa là: c là số nguyên nằm giữa \( - 3\) và 0. Có các số \( - 2; - 1\).

Vậy \(C = \left\{ { - 2; - 1} \right\}\)

d) \(D = \left\{ {d \in \mathbb{Z}| - 1 < d < 6} \right\}\)

D là tập hợp các số nguyên d thỏa mãn \( - 1 < d < 6\).

\( - 1 < d < 6\) có nghĩa là: b là số nguyên nằm giữa \( - 1\) và 6. Có các số \(0;1;2;3;4;5\).

Vậy \(D = \left\{ {0;1;2;3;4;5} \right\}\)

tth_new
Xem chi tiết
tthnew
Xem chi tiết
Nguyễn Mạnh Vũ
Xem chi tiết
Nguyễn Mạnh Vũ
Xem chi tiết
Lê Song Phương
19 tháng 11 2023 lúc 12:22

 Xét câu A, hiển nhiên khi \(n\rightarrow+\infty\) thì \(a_n=\sqrt{n^3+n}\rightarrow+\infty\) nên dãy (an) không bị chặn.

 Ở câu C, lấy n chẵn và cho \(n\rightarrow+\infty\) thì dãy (cn) cũng sẽ tiến tới \(+\infty\). Do đó dãy (cn) cũng là 1 dãy không bị chặn.

 Ở câu B, ta xét hàm số \(f\left(x\right)=x^2+\dfrac{1}{x}\) trên \(\left[1;+\infty\right]\), ta thấy \(f'\left(x\right)=2x-\dfrac{1}{x^2}\) \(=\dfrac{2x^3-1}{x^2}\) \(=\dfrac{x^3+x^3-1}{x^2}>0,\forall x\ge1\) . Do đó \(f\left(x\right)\) đồng biến trên \(\left[1;+\infty\right]\) và do đó cũng đồng biến trên \(ℕ^∗\). Nói cách khác, (bn) là dãy tăng . Như vậy, nếu bn bị chặn thì tồn tại giới hạn hữu hạn. Giả sử \(\lim\limits_{n\rightarrow+\infty}b_n=L>1\). Chuyển qua giới hạn, ta được \(L=\lim\limits_{n\rightarrow+\infty}\left(n^2+\dfrac{1}{n}\right)=+\infty\), vô lí. Vậy (bn) không bị chặn trên.

 Còn lại câu D. Ta thấy với \(n\inℕ^∗\) thì hiển nhiên \(d_n>0\). Ta thấy \(d_n=\dfrac{3n}{n^3+2}=\dfrac{3n}{n^3+1+1}\le\dfrac{3n}{3\sqrt[3]{n^3.1.1}}=1\), với mọi \(n\inℕ^∗\). Vậy, (dn) bị chặn 

 \(\Rightarrow\) Chọn D.

 

Witch Rose
Xem chi tiết
Nguyễn Thiều Công Thành
23 tháng 3 2018 lúc 21:01

giả sử a>(=)b>(=)c