Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phươngtrinh
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 7:29

\(a,\widehat{ABK}=\widehat{ACK}=90^0\) (góc nt chắn nửa đường tròn) nên \(\Delta ABK;\Delta ACK\) vuông tại B và C

\(b,\left\{{}\begin{matrix}CK//BH\left(\perp AC\right)\\BK//CH\left(\perp AB\right)\end{matrix}\right.\Rightarrow BHCK\) là hbh

\(c,\left\{{}\begin{matrix}AO=OM=R\\OM//AH\left(\perp BC\right)\end{matrix}\right.\Rightarrow HM=MK\)

Hình bình hành BHCK có M là trung điểm HK nên cũng là trung điểm BC

\(d,\left\{{}\begin{matrix}AO=OK=R\\HM=MK\left(cm.trên\right)\end{matrix}\right.\Rightarrow OM\) là đtb tam giác AHK

\(\Rightarrow OM=\dfrac{1}{2}AH\)

Xem chi tiết
Scarlett Ohara
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2021 lúc 20:09

a: Xét tứ giác BHCK có

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo HK

Do đó: BHCK là hình bình hành

b: Ta có: BHCK là hình bình hành

nên BH//CK

mà BH\(\perp\)AC

nên CK\(\perp\)AC
hay ΔCAK vuông tại C

Chi Quynh
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 21:46

a: Xét tứ giác BHCD có 

M là trung điểm của BC

M là trung điểm của HD

Do đó: BHCD là hình bình hành

Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 22:01

\(b,\) Kẻ \(OM\perp BC;ON\perp AC\)

\(\Rightarrow BM=MC;AN=NC\Rightarrow MN\) là đtb \(\Delta ABC\)

\(\Rightarrow MN\text{//}AB\Rightarrow\widehat{NMC}=\widehat{ABC};\widehat{MNC}=\widehat{ACB}\)

Mà \(\left\{{}\begin{matrix}\widehat{OMN}+\widehat{NMC}=90^0;\widehat{HAB}+\widehat{ABC}=90^0\\\widehat{ONM}+\widehat{MNC}=90^0;\widehat{ABH}+\widehat{ACB}=90^0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{OMN}=\widehat{HAB}\\\widehat{ONM}=\widehat{ABH}\end{matrix}\right.\)

\(\Rightarrow\Delta OMN\sim\Delta HAB\left(g.g\right)\\ \Rightarrow\dfrac{OM}{AH}=\dfrac{MN}{AB}=\dfrac{1}{2}\)

Gọi \(AM\cap OH=\left\{G'\right\}\)

\(OM\text{//}AH\Rightarrow\dfrac{G'M}{G'A}=\dfrac{OM}{AH}=\dfrac{1}{2}\Rightarrow G'\) là trọng tâm \(\Delta ABC\)

Do đó \(G'\equiv G\) hay \(H,G,O\) thẳng hàng

thiều huy hoàng
Xem chi tiết
Phạm Thư
Xem chi tiết
Phạm Lê Thanh Hiền
Xem chi tiết
Nguyễn Ngọc Anh Minh
18 tháng 9 2018 lúc 9:43

\(\widehat{ABK}=90^o\)(Góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BK\perp AB\) mặt khác \(CH\perp AB\)(Do H là trực tâm) \(\Rightarrow BK//CH\)

C/m tương tự cũng có \(CK//BH\)

=> Tứ giác BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Câu 2:

Gọi giao của BC với KH là M' => M là trung điểm của BC (M' là giao của hai đường chéo hbh BHCK)

Mặt khác M cũng là trung điểm của BC (Trong 1 đường tròn bán kính vuông gó với dây cung thì chia đôi dây cung)

=> \(M\equiv M'\) => H; M;K thẳng hàng

Nguyen Thi Trinh
Xem chi tiết