Tam giác ABC nhọn nội tiếp (O). H là trực tâm, AK là đường kính
a) CM: BKCH là hình bình hành
b) Cho M là trung điểm BC. CMR: OM= \(\frac{1}{2}\)AH
c) Tam giác ABC cần điều kiện gì để BHCK là hình thoi?
Cho tam giác ABC nhọn (AB<AC) nội tiếp trong đường tròn tâm O có H là trực tâm. Vẽ đường kính AK của (O).
a) Tam giác ABK và tam giác ACK là tam giác gì?
b) Tứ giác BHCK là hình gì?
c) Kẻ OM vuông góc BC ở M. CM: M là trung điểm của BC, HK.
d) CM: OM = 1/2 AH.
\(a,\widehat{ABK}=\widehat{ACK}=90^0\) (góc nt chắn nửa đường tròn) nên \(\Delta ABK;\Delta ACK\) vuông tại B và C
\(b,\left\{{}\begin{matrix}CK//BH\left(\perp AC\right)\\BK//CH\left(\perp AB\right)\end{matrix}\right.\Rightarrow BHCK\) là hbh
\(c,\left\{{}\begin{matrix}AO=OM=R\\OM//AH\left(\perp BC\right)\end{matrix}\right.\Rightarrow HM=MK\)
Hình bình hành BHCK có M là trung điểm HK nên cũng là trung điểm BC
\(d,\left\{{}\begin{matrix}AO=OK=R\\HM=MK\left(cm.trên\right)\end{matrix}\right.\Rightarrow OM\) là đtb tam giác AHK
\(\Rightarrow OM=\dfrac{1}{2}AH\)
Cho tam giác ABC nhọn, trực tâm H. Gọi M là trung điểm của BC. K là điểm đối xứng của H qua M
a, Tứ giác BHCK là hình gì? Vì sao?
b, Chứng minh tam giác ABK vuông
c, Tam giác ABC cần thêm điều kiện gì để tứ giác BHCK là hình thoi
Cho \(\Delta\)ABC nhọn, trực tâm H. Gọi M là trung điểm BC, K là trung điểm đối xứng H qua M.
a, Tứ giác BHCK là hình gì? Vì sao?
b, CM \(\Delta\)ACK vuông.
c, \(\Delta\)ABC cần có thêm điều kiện gì để tứ giác BHCK là hình thoi?
a: Xét tứ giác BHCK có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo HK
Do đó: BHCK là hình bình hành
b: Ta có: BHCK là hình bình hành
nên BH//CK
mà BH\(\perp\)AC
nên CK\(\perp\)AC
hay ΔCAK vuông tại C
Cho tam giác ABC nhọn, H là trực tâm của tam giác ABC. O là giao điểm của 3 đường trung trực. M là trung điểm của BC, P là trung điểm của AB. Vẽ điểm K sao cho O là trung điểm của AK.
a) CMR: BHCK là hình bình hành
b) CM: OP=CH/2
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), đường kính AD, H là trực tâm tam giác ABC, M là trung điểm BC, G là trọng tâm tam giác ABC
a, CMR AB vuông góc với BD, tứ giác BHCD là hình bình hành
b, CNR H,G,O thẳng hàng
c, TÌm GTLN của AH+BC theo R
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
\(b,\) Kẻ \(OM\perp BC;ON\perp AC\)
\(\Rightarrow BM=MC;AN=NC\Rightarrow MN\) là đtb \(\Delta ABC\)
\(\Rightarrow MN\text{//}AB\Rightarrow\widehat{NMC}=\widehat{ABC};\widehat{MNC}=\widehat{ACB}\)
Mà \(\left\{{}\begin{matrix}\widehat{OMN}+\widehat{NMC}=90^0;\widehat{HAB}+\widehat{ABC}=90^0\\\widehat{ONM}+\widehat{MNC}=90^0;\widehat{ABH}+\widehat{ACB}=90^0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{OMN}=\widehat{HAB}\\\widehat{ONM}=\widehat{ABH}\end{matrix}\right.\)
\(\Rightarrow\Delta OMN\sim\Delta HAB\left(g.g\right)\\ \Rightarrow\dfrac{OM}{AH}=\dfrac{MN}{AB}=\dfrac{1}{2}\)
Gọi \(AM\cap OH=\left\{G'\right\}\)
\(OM\text{//}AH\Rightarrow\dfrac{G'M}{G'A}=\dfrac{OM}{AH}=\dfrac{1}{2}\Rightarrow G'\) là trọng tâm \(\Delta ABC\)
Do đó \(G'\equiv G\) hay \(H,G,O\) thẳng hàng
cho tam giác nhọn ABC nội tiếp (O), H là trực tâm của tam giác. kẻ đường kính AD
a)cmr BHCD là hình bình hành
b) gọi I là trung điểm của BC . cmr AH=2OI
c) gọi K là giao điểm của AH với (O). cmr BCDK là hthang cân và H,K đối xứng nhau qua BC
Cho tam giác nhọn ABC,gọi H là trực tâm,giao của 3 đường trung trực là O. Gọi PQN lần lượt là trung điểm của AB,AC,AH
a, Chứng minh tứ giác OPQN là hình bình hành
b, Tam giác ABC phải có thêm điều kiện gì thì OPQN là hình chữ nhật
Cho tam giác ABC nhọn có trực tâm H và nội tiếp đường tròn tâm O. Vẽ đường kính AK .
1-Chứng minh tứ giác BHCK là hình bình hành
2-kẻ OM vuông góc với BC ở M. Chuesng minh H, M, K thẳng hàng
\(\widehat{ABK}=90^o\)(Góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BK\perp AB\) mặt khác \(CH\perp AB\)(Do H là trực tâm) \(\Rightarrow BK//CH\)
C/m tương tự cũng có \(CK//BH\)
=> Tứ giác BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
Câu 2:
Gọi giao của BC với KH là M' => M là trung điểm của BC (M' là giao của hai đường chéo hbh BHCK)
Mặt khác M cũng là trung điểm của BC (Trong 1 đường tròn bán kính vuông gó với dây cung thì chia đôi dây cung)
=> \(M\equiv M'\) => H; M;K thẳng hàng
Giải dùm mình
1/ Cho tam giác nhọn ABC nội tiếp đường tròn(O). Gọi H là trực tâm của tam giác đó, AK là đường kính của đường tròn(O)
a/ C/m: Tứ giác BHCK là hình bình hành
b/ Gọi M là trung điểm của BC. C/m: OM=\(\frac{AH}{2}\)
Thank!!