Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Phương Thảo
Xem chi tiết
Minh Trần Kim
Xem chi tiết
Thao Dong Nguyen
Xem chi tiết
ღ๖ۣۜBĭη➻²ƙ⁸ღ
1 tháng 5 2021 lúc 19:34

Vì ΔABC vuông tại A

==> BC2 = AC+AB2 ( Định lý Pitago )

       BC2 = 42 + 32 

       BC= 27

==> BC = √27

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 22:51

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 22:52

b) Xét ΔABC có AC>AB(4cm>3cm)

mà góc đối diện với cạnh AC là \(\widehat{ABC}\)

và góc đối diện với cạnh AB là \(\widehat{ACB}\)

nên \(\widehat{B}>\widehat{C}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

hacker
Xem chi tiết
HaNa
22 tháng 12 2023 lúc 21:44

a)

Xét 2 tam giác vuông ABC và HAC có:

\(\widehat{C}\) chung

=> tg ABC \(\sim\) td HAC (g.g)

=> \(\widehat{ABC}=\widehat{HAC}\)

b)

Xét 2 tg vuông ACB và HAB có:

\(\widehat{B}\) chung

=> tg ACB \(\sim\) tg HAB (g.g)

=> \(\widehat{ACB}=\widehat{HAB}\)

dia fic
Xem chi tiết
dia fic
Xem chi tiết
Trần Minh Hoàng
10 tháng 1 2021 lúc 9:03

Đẳng thức cần chứng minh tương đương với:

\(\dfrac{2a+b+c}{\left(a+b\right)\left(a+c\right)}=\dfrac{3}{a+b+c}\)

\(\Leftrightarrow\left(2a+b+c\right)\left(a+b+c\right)=3\left(a^2+ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+b^2+c^2+3ab+3ac+2bc=3a^2+3ab+3bc+3ca\)

\(\Leftrightarrow a^2=b^2+c^2-bc\).

Đây chính là định lý hàm cos cho tam giác ABC có \(\widehat{A}=60^o\).

(Phần chứng minh bạn có thể xem ở Cho tam giác ABC có Â=60 độ. Chứng minh rằng BC^2=AB^2 AC^2-AB.BC - Hoc24)

Ly Ly
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 21:05

1.

\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)

 

nguyen hai
2 tháng 10 2021 lúc 21:08

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 21:09

Bài 2:

a: Xét ΔABC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=6:\sin60^0=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

Nam Khánh 2k
Xem chi tiết

loading...

loading...

Nam Khánh 2k
Xem chi tiết

Câu 2:

a: ΔDEF vuông tại E

=>\(\widehat{EDF}+\widehat{EFD}=90^0\)

=>\(\widehat{EFD}+30^0=90^0\)

=>\(\widehat{EFD}=60^0\)

ΔDEF vuông tại E

=>\(ED^2+EF^2=FD^2\)

=>\(ED^2=10^2-6^2=64\)

=>\(ED=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔIFE và ΔIDP có

\(\widehat{IFE}=\widehat{IDP}\)(hai góc so le trong, EF//DP)

IF=ID

\(\widehat{FIE}=\widehat{DIP}\)(hai góc đối đỉnh)

Do đó: ΔIFE=ΔIDP

=>IE=IP

Câu 1:

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-50^0=40^0\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-3^2=16\)

=>\(AC=\sqrt{16}=4\left(cm\right)\)

b: Xét ΔMAB và ΔMDC có

\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, BA//CD)

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔMAB=ΔMDC

=>MA=MD

Thành Công Lê
Xem chi tiết

Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
=>AB=DC

mà AB<AC

nên CD<CA

Xét ΔCDA có CD<CA

mà \(\widehat{CAD};\widehat{CDA}\) lần lượt là góc đối diện của cạnh CD,CA

nên \(\widehat{CAD}< \widehat{CDA}\)

mà \(\widehat{CDA}=\widehat{BAM}\)(ΔMAB=ΔMDC)

nên \(\widehat{BAM}>\widehat{CAM}\)