Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quach Bich
Xem chi tiết
Trâm Phạm
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 16:33

a.

Do \(-1\le sin\left(x+\frac{\pi}{6}\right)\le1\Rightarrow1\le y\le5\)

\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{6}\right)=1\)

\(y_{max}=5\) khi \(sin\left(x+\frac{\pi}{6}\right)=-1\)

b.

\(y=2\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]+3\)

\(y=2-4sin^2x.cos^2x+3=5-sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow4\le y\le5\)

\(y_{min}=4\) khi \(sin^22x=1\)

\(y_{max}=5\) khi \(sin^22x=0\)

Nguyễn Việt Lâm
4 tháng 10 2020 lúc 16:35

c.

\(y=2sin2x-1\)

Do \(-1\le sin2x\le1\Rightarrow-3\le y\le1\)

\(y_{min}=-3\) khi \(sin2x=-1\)

\(y_{max}=1\) khi \(sin2x=1\)

d.

\(-1\le sin3x\le1\Rightarrow-1\le y\le3\)

e.

\(0\le sin^22x\le1\Rightarrow1\le y\le4\)

Khách vãng lai đã xóa
Nguyễn Hoàng Long
Xem chi tiết
Thiên Yết
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 7:11

1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)

\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)

Vậy...

2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)

\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)

\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)

\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)

Vậy...

3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)

\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)

\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)

Vậy...

4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)

\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)

\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)

Vậy...

5, Xem lại đề

6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)

\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)

Vậy...

Trọng Nghĩa Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 22:57

a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)

=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)

=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)

b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)

c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)

=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)

=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)

=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)

=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)

=>\(x=\dfrac{1}{4}\Omega+k\Omega\)

títtt
Xem chi tiết
Akai Haruma
31 tháng 7 2023 lúc 20:10

Lời giải:

a. 

\(A=\frac{3}{2}-2(\frac{\cos x}{\sin x})^2=\frac{3}{2}-2.(\frac{1}{\tan x})^2=\frac{3}{2}-\frac{1}{2}(\frac{-3}{2})^2=-3\)

b.

\(A=\frac{1}{2}(\frac{\sin x}{\cos x})^2-\frac{5}{2}=2(\frac{1}{\cot x})^2-\frac{5}{2}=2(\frac{5}{3})^2-\frac{5}{2}=\frac{55}{18}\)

Hà Quang Minh
31 tháng 7 2023 lúc 20:19

a, \(A=\dfrac{3sin^2\left(x\right)-cos^2\left(x\right)}{2sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\dfrac{cos^2\left(x\right)}{sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\dfrac{1}{tan^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)^2=-3\)

b, \(A=\dfrac{sin^2\left(x\right)-5cos^2\left(x\right)}{2cos^2\left(x\right)}=\dfrac{1}{2}\dfrac{sin^2\left(x\right)}{cos^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\dfrac{1}{cot^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\left(\dfrac{5}{3}\right)^2-\dfrac{5}{2}=\dfrac{55}{18}\)

Phạm Đắc Quyền
Xem chi tiết
Thảo Nguyễn Phương
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2020 lúc 10:30

a/ Bạn coi lại đề bài, pt này có 1 nghiệm rất xấu ko giải được:

\(\Leftrightarrow1-sin^2x-2\sqrt{3}sinx.cosx=sin^3x+1\)

\(\Leftrightarrow sin^3x+sin^2x+2\sqrt{3}sinx.cosx=0\)

\(\Leftrightarrow sinx\left(sin^2x+sinx+2\sqrt{3}cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sin^2x+sinx+2\sqrt{3}cosx=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin^2x+sinx=-2\sqrt{3}cosx\) (\(cosx\le0\))

\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12cos^2x\)

\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12\left(1-sinx\right)\left(1+sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}1+sinx=0\left(2\right)\\sin^2x\left(sinx+1\right)=12\left(1-sinx\right)\left(3\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\) (thỏa mãn)

\(\left(3\right)\Leftrightarrow sin^3x+sin^2x+12sinx-12=0\)

Pt bậc 3 này có nghiệm thực thuộc \(\left(-1;1\right)\) nhưng rất xấu

Nguyễn Việt Lâm
4 tháng 8 2020 lúc 10:30

b/

\(\Leftrightarrow\frac{3}{5}sin2x+\frac{4}{5}cos2x=-cos2003x\)

Đặt \(\frac{3}{5}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sin2x.cosa+cos2x.sina=-cos2003x\)

\(\Leftrightarrow sin\left(2x+a\right)=sin\left(2003x-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2003x-\frac{\pi}{2}=2x+a+k2\pi\\2003x-\frac{\pi}{2}=\pi-2x-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4002}+\frac{a}{2001}+\frac{k2\pi}{2001}\\x=\frac{3\pi}{4010}-\frac{a}{2005}+\frac{k2\pi}{2005}\end{matrix}\right.\)

Nguyễn Việt Lâm
4 tháng 8 2020 lúc 10:31

c/

\(\Leftrightarrow\sqrt{3}sin\left(x-\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}-x\right)=2sin1972x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin\left(x-\frac{\pi}{3}\right)+\frac{1}{2}cos\left(x-\frac{\pi}{3}\right)=sin1972x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}+\frac{\pi}{6}\right)=sin1972x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin1972x\)

\(\Leftrightarrow\left[{}\begin{matrix}1972x=x-\frac{\pi}{6}+k2\pi\\1972x=\frac{7\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{11826}+\frac{k2\pi}{1971}\\x=\frac{7\pi}{11838}+\frac{k2\pi}{1973}\end{matrix}\right.\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 20:23

tan x=1

=>sin x=cosx

\(A=\dfrac{3sin^2x-sin^2x}{2sin^2x}=\dfrac{3-1}{2}=1\)