Cho \(\bigtriangleup\) ABC , \(90^0<\widehat{B} <135^0\) , \(\widehat{C} < 45^0\) . Vẽ \(AD\perp BC\) . Chứng minh rằng : \(BD < AD < CD\)
Cho \(\bigtriangleup\) ABC , \(90^0<\widehat{B} <135^0\) , \(\widehat{C} < 45^0\) . Vẽ \(AD\perp BC\) . Chứng minh rằng : \(BD < AD < CD\)
Bạn đăng tận 2 lần liền luôn? Đỗ Duy Mạnh
Cho \(\bigtriangleup\) ABC , \(90^0<\widehat{B} <135^0\) , \(\widehat{C} < 45^0\) . Vẽ \(AD\perp BC\) . Chứng minh rằng : \(BD < AD < CD\)
\(\bigtriangleup{ABC} \) có \(\widehat{B} = 45^0 ; \widehat{C} = 30^0 \) . Tính các cạnh \(\bigtriangleup{ABC}\) biết BC = 20cm
Cho hình thang vuông ABCD ( \(\widehat{A} = \widehat{D} = 90 ^0\) ) ; E là trung điểm của AD và \(\widehat{BEC} = 90^0\) . Cho biết ED = 2a . CMR :
a, AB . CD = \(a^2\)
b, \(\bigtriangleup{EAB}\) tia tia phân giác của \(\widehat{ABC}\)
a, Xét \(\bigtriangleup{EAB} \) và \(\bigtriangleup{CDE}\) , ta có :
\(\widehat{A} = \widehat{D} = 90^0\)
\(\widehat{AEB} = \widehat{ECD} \)
\(\Rightarrow\) \(\bigtriangleup{EAB} \sim \bigtriangleup{CDE}\) (g.g)
\(\Rightarrow\) \(\dfrac{AB}{DE} = \dfrac{EA}{CD} \)
\(\Rightarrow\) \( \dfrac{AB}{a} = \dfrac{a}{CD} \)
\(\Rightarrow\) \(AB.CD = a^2 \) (đpcm)
b, Xét \(\bigtriangleup{EAB}\) và \(\bigtriangleup{CEB}\) , ta có :
\(\widehat{A} = \widehat{CEB} = 90^0\)
Từ a, ta có : \(\dfrac{EB}{CE} = \dfrac{AB}{DE} = \dfrac{AB}{AE} \)
\(\Rightarrow\) \(\dfrac{EB}{AB} = \dfrac{ CE}{AE}\)
\(\Rightarrow\) \(\bigtriangleup{EAB} \) ~ \(\bigtriangleup{CEB} \)
Bài tập : Cho \(\bigtriangleup ABC\text{ vuông tại A có}\:\angle C=30^0\). Tia phân giác của \(\angle B\) cắt AC tại D \(\left(D\in AC\right)\). Kẻ \(DE\perp BC\) .
a) Chứng minh : \(\bigtriangleup ABD=\bigtriangleup EBD\).
b) Chứng minh rằng : \(\bigtriangleup ABE\:\text{đều}\).
c) \(BA\cap ED=\left\{F\right\}\). Chứng minh : \(\bigtriangleup ADF\:~\:\bigtriangleup ABC\) .
d) Chứng minh : \(AE\:||\:FC\).
đ) Chứng minh : \(\bigtriangleup BFC\:\text{đều}\).
\(\bigtriangleup{ABC}\) có \(\widehat{B} = 45^0 ; \widehat{C} = 30^0\) . Tính các cạnh \(\bigtriangleup{ABC}\) biết : \(AB = 15 cm\)
\(\bigtriangleup{ABC}\) , \(\widehat{A} = 120^0, \widehat{B} = 35^0 , AB = 12 , 25 dm \) . Giải \(\bigtriangleup{ABC}\) ( làm tròn đến chữ số thập phân số hai )
Ta có : \(\widehat{C} = 180^0 - (120^0+35^0) = 25^0 \)
Vẽ AH \(\perp BC\) . Vì các góc B và C nhọn nên H nằm giữa B và C
AH = \(AB . sinB\) = AC . sinC
\(\Rightarrow\) AC = \(\dfrac{AB.sinB}{sinC} = \dfrac{12,25.sin35^0}{sin25^0}\) \(\approx 16,63 (dm )\)
BC = BH + CH = AB . cos35\(^0\) + AC = . cos25\(^0\)
\(\approx \) 10,035 +15,069
\(\approx \) 25,10 (dm)
\(\bigtriangleup{ABC}\) nhọn có các đường cao AD , BE . Lấy P \(\in AD\) sao cho \(\widehat{BPC}\) = \(90^0\) . lấy Q \(\in BE \) sao cho \(\widehat{AQC}\) = \(90^0\) . Chứng minh :
a,, \(CA . CE =CD . CB \)
b, \(CP = CQ\)
Tự vẽ hình
Ta có : \(CA . CE = CD . CB\)
\(\Rightarrow\) \(\dfrac{CA}{CD} = \dfrac{CB}{CE}\)
Xét \(\bigtriangleup{CAD} \) và \(\bigtriangleup{CBE}\) , có :
\(\widehat{BCE}\) : chung
\(\widehat{CDA} = \widehat{CBE} = 90 ^0\)
\(\Rightarrow\) \(\bigtriangleup{CAD}\) ~ \(\bigtriangleup{CBE}\) ( g.g)
\(\Rightarrow\) \(\dfrac{CA}{CB} = \dfrac{CD}{ CE}\)
\(\Rightarrow\) \(CA. CE = CB . CD\) (đpcm)
b, Xét \(\bigtriangleup{AQC}\) vuông tại Q , có : \(QE \perp AD\)
Áp dụng hệ thức \(b^2 = a . b'\) , có :
\(\Leftrightarrow\) \(CQ^2 = CA . CE \) (1)
Xét \(\bigtriangleup{CPB}\) vuông tại P , có : \(PD \perp BC\)
Áp dụng hệ thức \(b^2= a . b'\)
\(\Leftrightarrow\) \(CP^2 = CB . CD \) (2)
Vì \(CA . CE = CB . CD \) (cmt) (3)
Từ (1),(2) và (3) \(\Rightarrow\) \(CQ^2 = CP^2\)
\(\Rightarrow\) \(CQ = CP \) (đpcm)
Cho tam giác ABC nhọn, ba đường cao AA', BB', CC'.
a) CM \(\bigtriangleup\)AC'C~\(\bigtriangleup\)AB'B (phần này mk lm đc rồi còn các phần còn lại thui giúp vs)
b)Trên BB' lấy M, trên CC' lấy N sao cho \(\widehat{AMC}=\widehat{ANB}=90^o\)
CMR: AM=AN
c) Gọi S, S' lần lượt là diện tích của \(\bigtriangleup\)ABC và\(\bigtriangleup\)A'B'C'. CMR cos2A+cos2B+cos2C=1-\(\dfrac{S'}{S}\)
a: Xét ΔAC'C vuông tại C' và ΔAB'B vuông tại B' có
góc C'AC chung
=>ΔAC'C đồng dạng với ΔAB'B
=>AC'/AB'=AC/AB
=>AC'*AB=AB'*AC(1)
b: Xét ΔANB vuông tại N có NC' vuông góc với AB
nên AC'*AB=AN^2(2)
Xét ΔAMC vuông tại M có MB' vuông góc với AC
nên AB'*AC=AM^2(3)
Từ (1), (2), (3) suy ra AN=AM