\(\bigtriangleup{ABC}\) vuông tại A , \(AH \perp BC\) , \(HE \perp AB\) , \(HF \perp AC ( E \in HB , F \in AC ) \) . Chúng minh rằng : AE .AB = AE . AC
Cho \(\Delta\)ABC vuông tại A, đường cao AH (H\(\in\)BC)
a) Biết AB = 12cm, BC = 20cm. Tính AC, B, AH (góc làm tròn đến độ)
b) Kẻ HE \(\perp\)AC (E\(\in\)AC). Chứng minh: AE.AC=AB2-HB2
c) Kẻ HF \(\perp\)AB (F\(\in\)AB). Chứng minh: AF=AE.tanB
d) Chứng minh rằng \(\dfrac{BF}{CE}\)=\(\dfrac{AB^3}{AC^3}\)
a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.
Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.
Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.
b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2
Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.
c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)
Vậy, ta đã chứng minh AF = AE * tan(B).
d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB
Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB
Vậy, ta đã chứng minh CE/BF = AC/AB.
Cho tam giác ABC có AB=AC kẻ AH vuông góc với BC (H thuộc BC)
a,Chứng minh :HB=HC
b,Kẻ HD\(\perp\)AB(D\(\in\)AB),HE\(\perp\)AC(E\(\in\)AC):Chứng minh HD=HE
c,Chứng minh BD=BC
PLS Help me!!!!
a) ta có AH⊥BC \(\Rightarrow\)\(\widehat{AHB}=\widehat{AHC}\)=90 độ
ta có AB=AC \(\Rightarrow\)\(\Delta\)ABC cân tại A
\(\Rightarrow\)\(\widehat{ABC}\)=\(\widehat{ACB}\) hay\(\widehat{ABH}=\widehat{ACH}\)
Xét \(\Delta\)AHB\(\left(\widehat{AHB}=90độ\right)\) và \(\Delta\)AHC \(\left(\widehat{AHC}=90\right)độ\) có
AB=AC(giả thiết)
\(\widehat{ABH}=\widehat{ACH}\) (chứng minh trên)
\(\Rightarrow\) \(\Delta\)AHB= \(\Delta\)AHC(cạnh huyền - góc nhọn)
\(\Rightarrow\)HB=HC(2 góc tương ứng)
vậy HB=HC
b) \(\Delta\)AHB= \(\Delta\)AHC(chứng minh câu a)
\(\Rightarrow\widehat{HAB}=\widehat{HAC}\) hay \(\widehat{HAD}=\widehat{HAE}\)
ta có HD⊥AB \(\Rightarrow\widehat{HDA}=90độ\)
HE⊥AC \(\Rightarrow\widehat{HEA}=90độ\)
Xét \(\Delta\)AHD (\(\widehat{HDA}=90độ\)) và \(\Delta\)AHE \(\left(\widehat{HEA}=90\right)độ\) có
\(\widehat{HAD}=\widehat{HAE}\) (chứng minh trên )
AH là cạnh huyền chung
\(\Rightarrow\)\(\Delta\)AHD = \(\Delta\)AHE (cạnh huyền -góc nhọn)
\(\Rightarrow HD=HE\) ( 2 góc tương ứng)
vậy HD=HE
c) ta có HD⊥AB \(\Rightarrow\widehat{HDB}=90độ\)
HE⊥AC \(\Rightarrow\widehat{HEC}=90độ\)
\(\Delta\)ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{DBH}=\widehat{ECH}\)
Xét \(\Delta\)HDB\(\left(\widehat{HDB}=90độ\right)\) và \(\Delta\)HEC \(\left(\widehat{HEC}=90độ\right)\)
BH=HC (chứng minh câu a)
\(\widehat{DBH}=\widehat{ECH}\) (chứng minh trên)
\(\Rightarrow\Delta HDB=\Delta HEC\) (cạnh huyền -góc nhọn)
\(\Rightarrow BD=EC\) (2 cạnh tương ứng )
vậy BD =EC
Cho △ABC vuông tại A có AC>AB. Vẽ AH\(\perp\)BC tại H. Vẽ HE\(\perp\)AB tại E. Trên tia HE lấy điểm I sao cho E là trung điểm của của HI
a) Chứng minh: △AEH=△AEI
b) Chứng minh: AI\(\perp\)BI
c) Cho BH=9cm và HC=16cm. Tính AH
d) Vẽ HF\(\perp\)AC tại F và trên tia HF lấy điểm K sao cho F là trung điểm của HK. Chứng minh: KI<BI+CK
éc ô éc !!!!! mình cần trong chiều nay ạ
sao vẽ hình được hay bạn vẽ sẵn để dễ hình dung được ko
bn sửa lại chỗ:
I => E
D=> I
K => F
E=> D
Cho tam giác ABC vuông tại A, đường cao AH( H thuộc BC). Từ H kẻ HE\(\perp\)AC, HF\(\perp\)AB, AB=c, AC=b.
a) tính AE, AF theo b,c
b)CM: BF\(\sqrt{CH}+CE\sqrt{BH}=AH\sqrt{BC}\)
Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ HE \(\perp\)AC, \(HF\perp AB\left(H\in BC,E\in AC,F\in AB\right)\). Đặt AB=m, AC=n
a) Tính AE, À theo m và n
b)CMR: EF3= EB.BC.CF
c)\(BF.\sqrt{CH}+CE.\sqrt{BH}=AH.\sqrt{BC}\)
Lời giải:
a) Áp dụng các công thức trong hệ thức lượng trong tam giác vuông đối với:
Tam giác $ABC$ vuông tại $A$, đường cao $AH$: $\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{m^2}+\frac{1}{n^2}$
$\Rightarrow AH^2=\frac{m^2n^2}{m^2+n^2}$
Tam giác $AHC$ vuông tại $H$ đường cao $HE$: $AH^2=AE.AC$
$\Leftrightarrow \frac{m^2n^2}{m^2+n^2}=AE.n\Rightarrow AE=\frac{m^2n}{m^2+n^2}$
Hoàn toàn tương tự: $AF=\frac{mn^2}{m^2+n^2}$
b) Đề đúng phải là: $EF^3=AE.BC.AF$
Xét tứ giác $AEHF$ có 3 góc vuông nên $AEHF$ là hình chữ nhật.
$\Rightarrow EF=AH\Rightarrow EF^3=AH^3(*)$
Mặt khác:
Theo phần a: $AH^2=AE.AC=AF.AB$
$\Rightarrow AH^4=AE.AF.AB.AC=AE.AF.2S_{ABC}=AE.AF.AH.BC$
$\Leftrightarrow AH^3=AE.AF.BC(**)$
Từ $(*); (**)\Rightarrow EF^3=AE.AF.BC$ (đpcm)
c)
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABC$, đường cao $AH$ và tam giác vuoogn $AHC$ đường cao $HE$:
$BF.\sqrt{CH}+CE.\sqrt{BH}=AH.\sqrt{BC}$
$\Leftrightarrow BF.\sqrt{CH.CB}+CE.\sqrt{BH.BC}=AH.BC$
$\Leftrightarrow BF. \sqrt{AC^2}+CE.\sqrt{AB^2}=AH.BC$
$\Leftrightarrow BF.AC+CE.AB=AH.BC$
$\Leftrightarrow (BA-AF)AC+CE.AB=AH.BC$
$\Leftrightarrow AF.AC=CE.AB$
$\Leftrightarrow $AF.AC=\frac{HE^2}{AE}.AB$
$\Leftrightarrow AF.AC=\frac{AF^2}{AE}.AB$
$\Leftrightarrow AE.AC=AF.AB$ (luôn đúng vì cùng bằng $AH^2$)
Vậy........
Cho ΔABC vuông tại A có AB = 8cm, AC = 6cm, đường cao AH, phân giác AD
a) Tính độ dài BC, BD ?
b) Kẻ HE ⊥ AB tại E , HF⊥ AC tại F. Chứng minh rằng AE.AB = AH\(^2\) ?
c) Chứng minh rằng \(\dfrac{\text{AE}}{AC}\)= \(\dfrac{\text{AF}}{AB}\) ?
HELP ME!
a) △ABC vuông tại A nên theo định lí Pytago ta có:
BC2 = AC2 + AB2
<=> BC2 = 62 + 82 = 100
<=> BC = 10 (cm)
△ABC có AD là tia phân giác
nên \(\dfrac{CD}{AC}\) = \(\dfrac{BD}{AB}\)= \(\dfrac{CD+BD}{AC+AB}\)= \(\dfrac{BC}{6+8}\)= \(\dfrac{10}{14}\)= \(\dfrac{5}{7}\) (theo tính chất dãy tỉ số bằng nhau)
Do đó BD = AB.\(\dfrac{5}{7}\)= \(\dfrac{40}{7}\)(cm)
b) Có HE ⊥ AB tại E => Góc AEH = 90o
Có AH ⊥ BC tại H => Góc AHB = 90o
Xét △AEH và △AHB có:
Góc AEH = Góc AHB = 90o (cmt)
Góc HAE chung
Do đó △AEH đồng dạng với △AHB (g.g)
=> \(\dfrac{AE}{AH}\) = \(\dfrac{AH}{AB}\) = AE.AB = AH2 (1)
c) Có HF⊥AC tại F => Góc AFH = 90o
Xét △AFH và △AHC có:
Góc AFH = Góc AHC = 90o
Góc CAH chung
Do đó △AFH đồng dạng với △AHC (g.g)
=> \(\dfrac{AF}{AH}\) = \(\dfrac{AH}{AC}\) <=> AF.AC = AH2 (2)
Từ (1) và (2) suy ra AF.AC = AE.AB <=> \(\dfrac{AE}{AC}\) = \(\dfrac{AF}{AB}\)
cho ΔABC vuông tại A. Vẽ AH⊥BC, HF⊥AC, HE⊥AB (H∈BC,F∈AC,E∈AB) .Gọi O là giao điểm của EF và AH
Chứng minh : BH.HC=4.OE.OF
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH cắt EF tại trung điểm của mỗi đường và AH=EF
=>OE=OF=AH/2
=>OE*OF=1/4*AH^2
=>4*OE*OF=AH^2=HB*HC
Cho tam giác ABC vuông tại A, AH\(\perp\)BC. Vẽ \(HD\perp AB\left(D\in AB\right),HE\perp AC\left(E\in AC\right)\). Biết BH =9cm, HC= 16cm. Tính DE
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=BH\cdot CH\)
\(\Leftrightarrow AH^2=9\cdot16=144\)
hay AH=12(cm)
Xét tứ giác ADHE có
\(\widehat{EAD}=90^0\)
\(\widehat{ADH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=DE(Hai đường chéo)
mà AH=12(cm)
nên DE=12cm
Cho \(\Delta ABC\) vuông tại A có đường cao AH. Kẻ \(HE\perp AB\) tại E, \(HF\perp AC\) tại F. Lấy M đối xứng với H qua AB. Từ B kẻ đường thẳng \(\perp BC\) cắt AM ở N. CM: NC, AH, EF đồng quy.