△ABC vuông tại A , AH⊥BC , HE⊥AB , HF⊥AC(E∈HB,F∈AC) . Chứng minh rằng : AE .AB = AE . AC ( sửa đề : AE . AB = AC . AF )
(Tự vẽ hình )
Xét \(\bigtriangleup{ AHB}\) vuông tại H có \(HE \perp AB\)
Áp dụng hệ thức \(b^2 = a.b'\)
\(\Leftrightarrow\) \(AH^2 = AB . AE \) (1)
Xét \(\bigtriangleup{AHC}\) vuông tại H có \(HF \perp AC \)
Áp dụng hệ thức \(c^2=a.c'\)
\(\Leftrightarrow\) \(AH^2 = AC .AF\) (2)
Từ (1) và (2) \(\Rightarrow\) AB . AE = AC . AF (đpcm)