Cho pt: \(x^2+3x+m=0\)
Tìm m để pt có hai nghiệm \(x_1,x_2\) thõa mãn \(x_1^2+x_2^2=5\)
`x^2 -(m+1)x+m=0`
tìm m để pt có 2 nghiệm `x_1 , x_2` thỏa mãn \(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)
\(\text{Δ}=\left[-\left(m+1\right)\right]^2-4\cdot1\cdot m\)
\(=\left(m+1\right)^2-4m\)
\(=\left(m-1\right)^2>=0\forall m\)
=>Phương trình luôn có hai nghiệm
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+1\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=x_1x_2-2\left(x_1+x_2\right)+6\)
=>\(\left(m+1\right)^2-2m=m-2\left(m+1\right)+6\)
=>\(m^2+1=m-2m-2+6\)
=>\(m^2+1=-m+4\)
=>\(m^2+m-3=0\)
=>\(m=\dfrac{-1\pm\sqrt{13}}{2}\)
Cho pt \(x^{^{ }2}-8x+m=0\). Tìm các giá trị của m để pt có hai nghiệm \(x_1,x_2\) thỏa mãn
a) \(2x_1+3x_2=6\) b) \(x_1=7x_2\) c) \(x_1-x_2=2\)
Moij người giúp mình với ạ mình đang cần gấp ạ
Cho phương trình \(x^2-3x+2m-1=0\). Tìm m để pt có nghiệm \(x_1\), \(x_2\) thỏa mãn \(x_1^3-x_2^3+3x_1x_2=9\).
Cho phương trình \(x^2-3x+2m-1=0\). Tìm m để pt có nghiệm \(x_1\), \(x_2\) thỏa mãn \(x_1^3-x_2^3+3x_1x_2=9\).
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). Pt này luôn có 2 nghiệm phân biệt \(x_1;x_2\) \(\forall m\). Tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn:
\(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)
(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))
Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)
\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\)
\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)
Thế vào \(x_1x_2=2m\)
\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)
\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)
\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))
Cho PT \(x^2-2\left(m+1\right)x+m^2+2m=0\) ( m là tham số). Tìm m để PT có 2 nghiệm phân biệt \(x_1;x_2\) ( với \(x_1< x_2\)) thảo mãn \(\left|x_1\right|=3\left|x_2\right|\)
|x1|=3|x2|
=>|2m+2-x2|=|3x2|
=>4x2=2m+2 hoặc -2x2=2m+2
=>x2=1/2m+1/2 hoặc x2=-m-1
Th1: x2=1/2m+1/2
=>x1=2m+2-1/2m-1/2=3/2m+3/2
x1*x2=m^2+2m
=>1/2(m+1)*3/2(m+1)=m^2+2m
=>3/4m^2+3/2m+3/4-m^2-2m=0
=>m=1 hoặc m=-3
TH2: x2=-m-1 và x1=2m+2+m+1=3m+3
x1x2=m^2+2m
=>-3m^2-6m-3-m^2-2m=0
=>m=-1/2; m=-3/2
Cho PT: \(x^2-mx-2=0\). Tìm m để PT có 2 nghiệm phân biệt thỏa mãn:
\(x_1^2.x_2+x_1x^2_2+7>x_2^1+x_2^2+\left(x_1+x_2\right)^2\)
Vì \(a\cdot c=1\cdot\left(-2\right)=-2< 0\)
nên phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=-2\end{matrix}\right.\)
Sửa đề: \(x_1^2\cdot x_2+x_1\cdot x_2^2+7>x_1^2+x_2^2+\left(x_1+x_2\right)^2\)
=>\(x_1x_2\left(x_1+x_2\right)+7>\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1+x_2\right)^2\)
=>\(-2m+7>m^2-2\left(-2\right)+m^2\)
=>\(2m^2+4< -2m+7\)
=>\(2m^2+2m-3< 0\)
=>\(\dfrac{-1-\sqrt{7}}{2}< m< \dfrac{-1+\sqrt{7}}{2}\)
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). pt trình này luôn có 2 nghiệm phân biệt \(x_1;x_2\) với ∀m. Khi đó tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn: \(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
Cái này phân tích đề ra là lm được bạn nhé
Cho PT $x^2-2(m-1)x-2m=0$
Tìm $m$ để PT có 2 nghiệm $x_1,x_2$ thỏa mãn $x_1^2+3x_2-4x_1x_2=5$
P/t có : \(\Delta\)' = \(\left(m-1\right)^2-\left(-2m\right)=m^2+1\ge1>0\forall m\) -> P/t có 2 no x1 ; x2 p/b . Theo Viet có : \(\left\{{}\begin{matrix}x1+x2=2\left(m-1\right)\\x1.x2=-2m\end{matrix}\right.\)
\(\Rightarrow x1+x2+x1.x2=-2\)
Mặt # ta có : \(\left[{}\begin{matrix}x1=m-1+\sqrt{m^2+1};x2=m-1-\sqrt{m^2+1}\\x1=m-1-\sqrt{m^2+1};x2=m-1+\sqrt{m^2+1}\end{matrix}\right.\)
Ta có : \(x1^2+3x2-4x1.x2=5\)
Đặt x1 = a ; x2 = b ; ta có hệ : \(\left\{{}\begin{matrix}a+b+ab+2=0\left(1\right)\\a^2+3b-4ab-5=0\left(2\right)\end{matrix}\right.\)
Từ (1) suy ra : \(b=\dfrac{-\left(a+2\right)}{a+1}\) ; ab = -a-b-2 ( Loại a = -1)
Thay vào (2) được : \(a^2+3b+4a+4b+8-5=0\) \(\Leftrightarrow\left(a+2\right)^2+7b=1\)
\(\Leftrightarrow b=\dfrac{1-\left(a+2\right)^2}{7}\)
Suy ra : \(\dfrac{-\left(a+2\right)}{a+1}=\dfrac{1-\left(a+2\right)^2}{7}\)
\(\Leftrightarrow7\left(a+2\right)=\left[\left(a+2\right)^2-1\right]\left(a+1\right)\)
\(\Leftrightarrow\) \(a^3+5a^2-11=0\)
Đoạn này bí quá ; bn thử giải xem
Cho pt: \(x^2-x+m\)=0 (1)
Tìm m để pt(1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn:
\(\left(x^2_1+x_2+m\right)\left(x_2^2+x_1+m\right)\)= \(m^2-m-1\)
\(\Delta=1-4m>0\Rightarrow m< \dfrac{1}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)
\(\left(x_1^2+x_2+m\right)\left(x_2^2+x_1+m\right)=m^2-m-1\)
\(\Leftrightarrow\left[x_1\left(x_1+x_2\right)-x_1x_2+x_2+m\right]\left[x_2\left(x_1+x_2\right)-x_1x_2+x_1+m\right]=m^2-m-1\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1+x_2\right)=m^2-m-1\)
\(\Leftrightarrow m^2-m-1=1\)
\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2>\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)