P/t có : \(\Delta\)' = \(\left(m-1\right)^2-\left(-2m\right)=m^2+1\ge1>0\forall m\) -> P/t có 2 no x1 ; x2 p/b . Theo Viet có : \(\left\{{}\begin{matrix}x1+x2=2\left(m-1\right)\\x1.x2=-2m\end{matrix}\right.\)
\(\Rightarrow x1+x2+x1.x2=-2\)
Mặt # ta có : \(\left[{}\begin{matrix}x1=m-1+\sqrt{m^2+1};x2=m-1-\sqrt{m^2+1}\\x1=m-1-\sqrt{m^2+1};x2=m-1+\sqrt{m^2+1}\end{matrix}\right.\)
Ta có : \(x1^2+3x2-4x1.x2=5\)
Đặt x1 = a ; x2 = b ; ta có hệ : \(\left\{{}\begin{matrix}a+b+ab+2=0\left(1\right)\\a^2+3b-4ab-5=0\left(2\right)\end{matrix}\right.\)
Từ (1) suy ra : \(b=\dfrac{-\left(a+2\right)}{a+1}\) ; ab = -a-b-2 ( Loại a = -1)
Thay vào (2) được : \(a^2+3b+4a+4b+8-5=0\) \(\Leftrightarrow\left(a+2\right)^2+7b=1\)
\(\Leftrightarrow b=\dfrac{1-\left(a+2\right)^2}{7}\)
Suy ra : \(\dfrac{-\left(a+2\right)}{a+1}=\dfrac{1-\left(a+2\right)^2}{7}\)
\(\Leftrightarrow7\left(a+2\right)=\left[\left(a+2\right)^2-1\right]\left(a+1\right)\)
\(\Leftrightarrow\) \(a^3+5a^2-11=0\)
Đoạn này bí quá ; bn thử giải xem