\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-2m+1-2m+3=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Vậy pt luôn có 2 nghiệm x1;x2
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=2\)
Thay vào ta đc \(4\left(m-1\right)^2-4\left(2m-3\right)=2\Leftrightarrow4m^2-8m+4-8m+12=2\)
\(\Leftrightarrow4m^2-16m+14=0\Leftrightarrow m=\dfrac{4\pm\sqrt{2}}{2}\)