Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
khát vọng

Cho PT: \(x^2-mx-2=0\). Tìm m để PT có 2 nghiệm phân biệt thỏa mãn:

\(x_1^2.x_2+x_1x^2_2+7>x_2^1+x_2^2+\left(x_1+x_2\right)^2\)

Vì \(a\cdot c=1\cdot\left(-2\right)=-2< 0\)

nên phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=-2\end{matrix}\right.\)

Sửa đề: \(x_1^2\cdot x_2+x_1\cdot x_2^2+7>x_1^2+x_2^2+\left(x_1+x_2\right)^2\)

=>\(x_1x_2\left(x_1+x_2\right)+7>\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1+x_2\right)^2\)

=>\(-2m+7>m^2-2\left(-2\right)+m^2\)

=>\(2m^2+4< -2m+7\)

=>\(2m^2+2m-3< 0\)

=>\(\dfrac{-1-\sqrt{7}}{2}< m< \dfrac{-1+\sqrt{7}}{2}\)


Các câu hỏi tương tự
ngọc linh
Xem chi tiết
Uyên
Xem chi tiết
Limited Edition
Xem chi tiết
Thanh Thanh
Xem chi tiết
 Huyền Trang
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Uyên
Xem chi tiết