Những câu hỏi liên quan
vvvvvvvv
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 6 2019 lúc 22:46

\(P=2\left(\frac{4}{2\left(ab+bc+ac\right)}+\frac{1}{a^2+b^2+c^2}\right)+\frac{1}{2\left(ab+bc+ca\right)}\)

\(P\ge\frac{2.\left(2+1\right)^2}{2\left(ab+bc+ca\right)+a^2+b^2+c^2}+\frac{1}{\frac{2\left(a+b+c\right)^2}{3}}\)

\(P\ge\frac{18}{\left(a+b+c\right)^2}+\frac{3}{2\left(a+b+c\right)^2}=18+\frac{3}{2}=\frac{39}{2}\)

Dâu "=" khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
Tường Nguyễn Thế
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 11 2019 lúc 15:02

\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Diệu Anh Bùi
Xem chi tiết
Nguyễn Hoàng
19 tháng 2 2020 lúc 22:39

Áp dụng bđt Cauchy-schwarz dạng engel ta có:

1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)

Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)

2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)

Dấu "=" \(\Leftrightarrow a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
phan tuấn anh
Xem chi tiết
Thắng Nguyễn
1 tháng 4 2017 lúc 21:30

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

Bình luận (0)
alibaba nguyễn
1 tháng 4 2017 lúc 22:59

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

Bình luận (0)
tran thu ha
1 tháng 5 2017 lúc 22:55

bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu

Bình luận (0)
Agami Raito
Xem chi tiết
Trần Lâm Thiên Hương
Xem chi tiết
Trần Lâm Thiên Hương
15 tháng 5 2018 lúc 21:03

Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp

Bình luận (0)
zZz Cool Kid_new zZz
1 tháng 8 2020 lúc 19:31

Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)

\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)

\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)

Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Ta thực hiện phép đổi biến thì:

\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)

Đến đây là phần của bạn

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
3 tháng 8 2020 lúc 19:10

(Vào thống kê hỏi đáp xem ảnh nhé! 2 cách, cách đầu dùng kỹ thuật uvw, cách kia là SOS)

Bình luận (0)
 Khách vãng lai đã xóa
Cathy Trang
Xem chi tiết
Đỗ Phạm Ngọc Phước
Xem chi tiết
soyeon_Tiểu bàng giải
18 tháng 2 2017 lúc 22:16

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

a3/b+2c + b3/c+2a + c3/a+2b = a4/ab+2ac + b4/bc+2ab + c4/ac+2bc\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\frac{1}{3\left(ab+bc+ca\right)}\)\(\ge\frac{1}{3\left(a^2+b^2+c^2\right)}=\frac{1}{3}\left(ĐPCM\right)\)

Bình luận (0)
Lê Hồng Anh
Xem chi tiết
alibaba nguyễn
21 tháng 6 2017 lúc 15:54

\(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\)

\(=\frac{a^4}{ab+2ca}+\frac{b^4}{bc+2ab}+\frac{c^4}{ca+2bc}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=\frac{1}{3}\)

Bình luận (0)