Giải hệ PT:
\(\left\{{}\begin{matrix}x+2y=3\\\sqrt{y+3}+\sqrt{x+7y+1}+y^3+y=10\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x+\sqrt{\left(x+1\right)y}=2y-1\\\sqrt{2x+3}+\sqrt{y}=x^2-y\end{matrix}\right.\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-1\\y\ge0\end{matrix}\right.\)
Ta có : \(x+\sqrt{\left(x+1\right).y}=2y-1\)
\(\Leftrightarrow x+1+\sqrt{\left(x+1\right)y}-2y=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y}\right)\left(\sqrt{x+1}+2\sqrt{y}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{y}\left(1\right)\\\sqrt{x+1}+2\sqrt{y}=0\left(2\right)\end{matrix}\right.\)
Từ (2) ta có \(\left\{{}\begin{matrix}x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\) (tm)
Thử lại ta có (x;y) = (-1;0) là 1 nghiệm của hệ phương trình
Từ (1) ta có : x + 1 = y
Khi đó \(\sqrt{2x+3}+\sqrt{y}=x^2-y\)
\(\Leftrightarrow\sqrt{2x+3}+\sqrt{x+1}=x^2-x-1\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=x^2-x-6\)
\(\Leftrightarrow\dfrac{2x-6}{\sqrt{2x+3}+3}+\dfrac{x-3}{\sqrt{x+1}+2}=\left(x-3\right)\left(x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}=x+2\end{matrix}\right.\)
Với x = 3 => y = 4 (tm)
Với \(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}=x+2\)
Vì \(x\ge-1\) nên \(\dfrac{2}{\sqrt{2x+3}+3}\le\dfrac{1}{2};\dfrac{1}{\sqrt{x+1}+2}\le\dfrac{1}{2}\)
nên \(VT\le\dfrac{1}{2}+\dfrac{1}{2}=1\)
lại có \(VP\ge1\) khi x \(\ge-1\)
Dấu "=" xảy ra khi x = -1 => y = 0 (tm)
Vậy (x;y) = (-1;0) ; (3;4)
đk: \(\left\{{}\begin{matrix}x\ge-1\\y\ge0\\x^2>y\end{matrix}\right.\)
pt đầu \(\Leftrightarrow\sqrt{\left(x+1\right)y}=2y-x-1\)
\(\Rightarrow\left(x+1\right)y=4y^2+x^2+1+2x-4xy-4y\)
\(\Leftrightarrow x^2+4y^2-5xy+2x-5y+1=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-4y\right)+\left(x-y\right)+\left(x-4y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x-4y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x+1\\x=4y-1\end{matrix}\right.\)
TH1: \(y=x+1\) thay vào pt thứ hai, ta được
\(\sqrt{2x+3}+\sqrt{x+1}=x^2-x-1\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=x^2-x-6\)
\(\Leftrightarrow\dfrac{2x-6}{\sqrt{2x+3}+3}+\dfrac{x-3}{\sqrt{x+1}+2}-\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2=0\end{matrix}\right.\)
TH1.1: \(x=3\Rightarrow y=x+1=4\) (nhận)
TH1.2:\(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2=0\) (chỗ này mai mình nghĩ tiếp)
TH2: \(x=4y-1\). Thay vào pt thứ hai, ta được
\(\sqrt{8y+1}+\sqrt{y}=16y^2-9y+1\)
\(\Leftrightarrow\left(\sqrt{8y+1}-1\right)+\sqrt{y}=16y^2-9y\)
\(\Leftrightarrow\dfrac{8y}{\sqrt{8y+1}+1}+\dfrac{y}{\sqrt{y}}-16y^2+9y=0\)
\(\Leftrightarrow y\left(\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9=0\end{matrix}\right.\)
TH2.1: \(y=0\) \(\Rightarrow x=4y-1=-1\) (nhận)
TH2.2: \(\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9=0\)
(đoạn này để mai mình nghĩ tiếp nhé, ta tìm được các nghiệm \(\left(x;y\right)=\left(-1;0\right);\left(3;4\right)\))
giải hệ pt :
a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^2+y^2-xy\right)=70\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(16-2xy\right)\left(16-3xy\right)=70\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\3x^2y^2-40xy+93=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left[{}\begin{matrix}xy=\dfrac{31}{3}\\xy=3\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=4\\xy=\dfrac{31}{3}\end{matrix}\right.\)
Phương trình này vô nghiệm
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)
b, ĐK: \(xy>0\)
\(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{y}+\dfrac{2y}{x}+4=9\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+y^2\right)=5xy\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x-2y\right)=0\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\\x-y+xy=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}y=2x\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\2x^2-x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\\left(x+1\right)\left(2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=3\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x=2y\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2+y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\sqrt{3y^2+13}-\sqrt{15-2x}=\sqrt{x+1}\\y^4-2x^2y+7y^2=\left(x+1\right)\left(8-x\right)\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x+y}-\sqrt{x-y}=2\\\sqrt{x^2+y^2+1}-\sqrt{x^2-y^2}=3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\sqrt{2x+y+1}-\sqrt{x+y}=3\\\sqrt{3\left(x+y\right)^2+1}+\sqrt{x-5}=5\end{matrix}\right.\)
giải hệ pt:
(1)\(\left\{{}\begin{matrix}2\text{x}+2y+2\text{x}y=10\\x^2+y^2=5\end{matrix}\right.\)
(2)\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=3\\\sqrt{xy}=2\end{matrix}\right.\)
(3)\(\left\{{}\begin{matrix}x-y=1\\x.y=6\end{matrix}\right.\)
(4)\(\left\{{}\begin{matrix}|x|+y=3\\2|x|-y=3\end{matrix}\right.\)
Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)
=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)
<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1
Câu 2 dùng vi-et đảo
Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới
Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ
giải hệ pt sau
\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{2x+y+1}+2\sqrt[3]{7x+12y+8}=2xy+y+5\end{matrix}\right.\)
Xét \(pt\left(1\right)\) dễ dàng suy ra \(x+y\ge0\)
\(VT=\sqrt{\left(x-y\right)^2+\left(2x+y\right)^2}+\sqrt{\left(x-y\right)^2+\left(2y+x\right)^2}\)
\(\ge\left|2x+y\right|+\left|2y+x\right|\ge3\left(x+y\right)\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y\\x,y\ge0\end{matrix}\right.\)
Thay vào \(pt\left(2\right)\) ta được:
\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)
\(\Leftrightarrow\left[\sqrt{3x+1}-\left(x+1\right)\right]+2\left[\sqrt[3]{19x+8}-\left(x+2\right)\right]=2x^2-2x\)
\(\Leftrightarrow\left(x-x^2\right)\left[\dfrac{1}{\sqrt{3x+1}+x+1}+2\cdot\dfrac{x+7}{\sqrt[3]{\left(19x+8\right)^2}+\left(x+2\right)\sqrt[3]{19x+8}+\left(x+2\right)^2}+2\right]=0\)
Do \(x;y\ge0\) nên pt trong ngoặc luôn dương
\(\Rightarrow x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Mà \(x=y\)\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\) là nghiệm của hpt
thanks b đã chỉ giúp mình.tại đánh máy nên mình ko để ý^^
pt(1): 5x2+2xy+2y2>=(2x+y)2 nên \(\sqrt{5x^{2^{ }}+2xy+2y^2}\ge\:\)trị tuyệt đối 2x+y.
cmtt>\(\sqrt{2x^2+2xy+5y^2}\ge\)trị tuyệt đối x+ 2y.
>mà tt đối 2x+y cộng ttđ x+2y>= 3(x+y).
>(1)>=3(x+y).
đâu = xảy ra khi và chỉ khi x=y.
thay x=y >=0 vào (2):
\(\sqrt{3x+1}+2\sqrt[3]{19x+8}\) = 2x2+x+5.
<=>\(\left(\sqrt{3x+1}-\left(x+1\right)\right)\)+\(\left(2\sqrt[3]{19x+8}-\left(x+2\right)\right)\)= 2x2- 2x.
nhân liên hợp ta đc:
(x2-x)*(\(\dfrac{1}{\sqrt{3x+1}+x+1}+2\dfrac{x+7}{\sqrt[3]{19x+18}+\left(x+2\right)\left(\sqrt[3]{19x+18}\right)+\left(x+2\right)^2}=0\)
dễ thấy phần *>0 với mọi x,ytheo đk của (1)
>(x2 -x)=0
>x=0 hoặc x=1
>(x,y)=(0,0); (1,1).
vậy....
Giải hệ pt:
a)\(\left\{{}\begin{matrix}x-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}-x-\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+2y=-\sqrt{6}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(1-\sqrt{3}\right)x+2y=1-\sqrt{3}\\\left(1-\sqrt{3}\right)x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\sqrt{3}\\x=1+\left(1+\sqrt{3}\right)\cdot\left(-\sqrt{3}\right)=-2-\sqrt{3}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}-x-\sqrt{2}y=\sqrt{3}\\x+\sqrt{2}y=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\in R\\x=-\sqrt{3}-y\sqrt{2}\end{matrix}\right.\)
giúp mik giải bài hệ pt vs ạ!
1,\(\left\{{}\begin{matrix}x^2+y^2+\dfrac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x^3+xy^2+x=y^3+4x^2y+2y\\\sqrt{4x^2+x+6}-5\sqrt{1+2y}=1-4y\end{matrix}\right.\)
3,\(\left\{{}\begin{matrix}2x^2+\sqrt{2}x=\left(x+y\right)y+\sqrt{x+y}\\\sqrt{x-1}+xy=\sqrt{y^2+21}\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}\sqrt{9y^2+\left(2y+3\right)\left(y-x\right)}+4\sqrt{xy}=7x\\\left(2y-1\right)\sqrt{1+x}+\left(2y+1\right)\sqrt{1-x}=2y\end{matrix}\right.\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
Điều kiện:\(9y^2+(2y+3)(y-x)\geq 0;xy\geq 0;-1\leq x\leq 1\)
Từ phương trình thứ nhất có \(x\geq 0\Rightarrow y\geq 0\)
Xét \(\left\{\begin{matrix} x=0\\ y=0 \end{matrix}\right.\) thỏa mãn hệ
Xét x,y không đồng thời bằng 0, ta có
\(\sqrt{9y^2+(2y+3)(y-x)}-3x+4\sqrt{xy}-4x=0\)
\(\Leftrightarrow \frac{9y^2+(2y+3)(y-x)-9x^2}{\sqrt{9y^2+(2y-3)(y-x)+3x}}+\frac{4(xy-x^2)}{\sqrt{xy}+x}=0\)
\(\Leftrightarrow (y-x)\left [ \frac{11y+9x+3}{\sqrt{11y^2+(2y-3)(y-x)+3x}}+\frac{4x}{\sqrt{xy}+x} \right ]=0\Leftrightarrow y=x\)
Tới đây thay vào phương trình (2) giải dễ dàng.
giải hệ pt :
a,\(\left\{{}\begin{matrix}\sqrt{y}\left(\sqrt{x}+\sqrt{x+3}\right)=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^2+x=y^2+y\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\)
a, ĐK: \(x,y\ge0\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\sqrt{y}}{\sqrt{x+3}-\sqrt{x}}=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=\sqrt{x+3}\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+3}=x+1\)
\(\Leftrightarrow x+3=x^2+2x+1\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)
Thay \(x=1\) vào hệ phương trình đã cho ta được \(y=1\)
Vậy pt đã cho có nghiệm \(x=y=1\)
b, \(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(y+\dfrac{1}{2}\right)^2\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-3x=0\end{matrix}\right.\left(1\right)\\\left\{{}\begin{matrix}x+y=-1\\x^2+y^2=-3\end{matrix}\right.\left(vn\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=0\end{matrix}\right.\)
Vậy ...
c, Đặt \(\left\{{}\begin{matrix}x^2+y^2=a\\xy=b\end{matrix}\right.\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a^2-b^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a-b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)^2=9\)
\(\Rightarrow x+y=\pm3\)
TH1: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=-3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\end{matrix}\right.\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
caau a) binh phuong len ra no x=y tuong tu
c)
ĐK $y \geqslant 0$
Hệ đã cho tương đương với
$\left\{\begin{matrix} 2x^2+2xy+2x+6=0\\ (x+1)^2+3(y+1)+2xy=2\sqrt{y(x^2+2)} \end{matrix}\right.$
Trừ từng vế $2$ phương trình ta được
$x^2+2+2\sqrt{y(x^2+2)}-3y=0$
$\Leftrightarrow (\sqrt{x^2+2}-\sqrt{y})(\sqrt{x^2+2}+3\sqrt{y})=0$
$\Leftrightarrow x^2+2=y$