Cho tam giác ABC vuông tại A . CMR tan góc\(\dfrac{ABC}{2}=\dfrac{AC}{AB+BC}\)
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)
b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)
Tương tự \(\Rightarrow CH=BC.sin^2B\)
Cho tam giác ABC vuông tại A có BD là tia phân giác của góc B ( D thuộc AC).Chứng minh rằng :\(\dfrac{B}{2}\) =\(\dfrac{AC}{BC+AB}\)
CMR : tan\(\dfrac{B}{2}=\dfrac{AC}{BC+AB}\) nhé mình ghi thiếu
Theo tính chất phân giác:
\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
\(\Rightarrow tan\dfrac{B}{2}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}\) (đpcm)
Cho tam giác ABC vuông tại A (AB < AC) , đường cao AH.
a) AB=6 cm, cos ABC = 3/5 . Tính BC,AC,AH.
b) Kẻ HD vuông góc với AB, HE vuông góc với AC . c/m: AD.AB=AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. c/m: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Cho tam giác ABC, góc A = 90 độ, kẻ AH vuông góc BC tại H. Chứng minh:
\(AH^2=HB.HC\)
\(AB^2=HB.BC\)
\(AC^2=HC.BC\)
\(\dfrac{1}{AH^2}=\dfrac{1}{BA^2}+\dfrac{1}{AC^2}\)
a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)(đpcm)
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=HB\cdot BC\)(đpcm)
Cho tam giác ABC. Gọi O là giao của ba đường trung trực của tam giác ABC. Đường thẳng AO cắt BC tại D. Từ D kẻ DE⊥AC và DF⊥AB ( E thuộc AC, F thuộc AB). Đường thẳng đi qua B và vuông góc với AB cắt AO tại M.
a) CMR góc ACM=90o
b)CMR \(\dfrac{AF}{AB}=\dfrac{AD}{AM}\) , \(\dfrac{AE}{AC}=\dfrac{AD}{AM}\) . Từ đó chứng tỏ rằng EF//BC.
c) Gọi I là giao của ba đường phân giác của tam giác ABC, kẻ phân giác AN(N∈BC) và G là trọng tâm của ABC. CMR \(\dfrac{AB}{BN}=\dfrac{AC}{NC}=\dfrac{AB+AC}{BC}\) . Từ đó cmr nếu AB+AC=2BC thì IG//BC
cho tam giác ABC vuông tại A đường cao AH. cmr \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
Xét tam giác ABC vuông tại A, có đường cao AH.
Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
Vì \(AH\cdot BC=AC\cdot AB\) (chứng minh ở câu hỏi trước r)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}\Leftrightarrow\dfrac{1}{AH}=\dfrac{BC}{AB\cdot AC}\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{BC^2}{AB^2\cdot AC^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\left(pytago\right)\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
Xét tam giác ABC vuông tại A
ta có \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BH.BC}+\dfrac{1}{CH.BC}=\dfrac{CH+BH}{CH.BC.BH}=\dfrac{BC}{BC.AH^2}=\dfrac{1}{AH^2}\left(đpcm\right)\)
cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Gọi E và F là hình chiếu của H trên trên AB và AC; O là trung điểm của BC và AO cắt EF tại I.
a) CMR: \(\dfrac{AH^2}{BE.CF}=\dfrac{AB}{AC}+\dfrac{AC}{AB}\)
b) Tính \(\dfrac{AI}{HB}+\dfrac{AI}{HC}\)
cho tg ABC\(\perp\)A, đường phân giác BD.
CMR: a) \(\tan\dfrac{B}{2}=\dfrac{AC}{BC+AB}\)
CMR: b) S(ABC)=\(\dfrac{AB\times BC}{2}\times\sin B\)
b: \(\dfrac{AB\cdot BC}{2}\cdot sinB\)
\(=\dfrac{AB\cdot BC}{2}\cdot\dfrac{AC}{BC}=\dfrac{AB\cdot AC}{2}\)
\(=S_{ABC}\)
a: Xét ΔABD vuông tại A có tan ABD=AD/AB
Xét ΔCBA có BD là phân giác
nên AD/AB=CD/BC
=>\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
=>\(tan\left(ABD\right)=\dfrac{AC}{AB+BC}\)
Cho tam giác ABC nhọn nội tiếp (O), M thuộc cong BC nhỏ ( AB < AC ) . Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, F là giao của DE và AB. Xá đinhm vị trí của M trên cung BC nhỏ để A= \(\dfrac{AB}{MF}+\dfrac{AC}{ME}+\dfrac{BC}{MD}\) MIN.
cho tam giác ABC vuông tại A, AB = a đường cao AH, tan B = \(\dfrac{\sqrt{3}}{2}\). Từ H kẻ HI, HK vuông góc với AB và AC. Tính diện tích tứ giác BIKC