Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng trung
Xem chi tiết
An Thy
7 tháng 6 2021 lúc 17:47

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

Trang Triệu
Xem chi tiết
Trang Triệu
22 tháng 1 2021 lúc 20:53

CMR : tan\(\dfrac{B}{2}=\dfrac{AC}{BC+AB}\) nhé mình ghi thiếu

 

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 11:37

Theo tính chất phân giác:

\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)

\(\Rightarrow tan\dfrac{B}{2}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}\) (đpcm)

Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2021 lúc 23:04

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

Gojo Satoru
Xem chi tiết
Thu Thao
15 tháng 4 2021 lúc 21:00

undefinedundefined

Nguyễn Lê Phước Thịnh
15 tháng 4 2021 lúc 21:00

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)

Nguyễn Lê Phước Thịnh
15 tháng 4 2021 lúc 21:01

b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔABH\(\sim\)ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=HB\cdot BC\)(đpcm)

:)))))))
Xem chi tiết
:)))))))
31 tháng 1 2021 lúc 18:32

tớ nhầm chương sorry

nguyen ngoc son
Xem chi tiết
nthv_.
10 tháng 9 2021 lúc 10:28

    Xét tam giác ABC vuông tại A, có đường cao AH.

Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

Nguyễn Hoàng Minh
10 tháng 9 2021 lúc 10:30

Vì \(AH\cdot BC=AC\cdot AB\) (chứng minh ở câu hỏi trước r)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}\Leftrightarrow\dfrac{1}{AH}=\dfrac{BC}{AB\cdot AC}\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{BC^2}{AB^2\cdot AC^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\left(pytago\right)\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

 

 

hello sun
10 tháng 9 2021 lúc 10:33

Xét tam giác ABC vuông tại A 

ta có \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BH.BC}+\dfrac{1}{CH.BC}=\dfrac{CH+BH}{CH.BC.BH}=\dfrac{BC}{BC.AH^2}=\dfrac{1}{AH^2}\left(đpcm\right)\)

ILoveMath
Xem chi tiết
Nguyễn Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 23:57

b: \(\dfrac{AB\cdot BC}{2}\cdot sinB\)

\(=\dfrac{AB\cdot BC}{2}\cdot\dfrac{AC}{BC}=\dfrac{AB\cdot AC}{2}\)

\(=S_{ABC}\)

a: Xét ΔABD vuông tại A có tan ABD=AD/AB

Xét ΔCBA có BD là phân giác

nên AD/AB=CD/BC

=>\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)

=>\(tan\left(ABD\right)=\dfrac{AC}{AB+BC}\)

hiền nguyễn
Xem chi tiết
Vũ Thị Nhung
Xem chi tiết