b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH.
a) Cho AB = 6 cm và cosABC = \(\dfrac{3}{5}\). Tính BC, AC, BH.
b) Kẻ HD vuông với AB tại D, AE vuông AC tại E. Chứng minh AD.AB = AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. Chứng minh: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\).
Cho tam giác ABC vuông tại A, đường cao AH.
a) Nếu sin ACB=3/5 và BC=20 cm. Giải tam giác ABC.
b) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. c/m AD.AC=BH.BC
c) Kẻ tia phân giác BE của DBA . c/m \(tanEBA=\dfrac{AD}{AB+BD}\)
Cho Tam giác ABC vuông tại A (AB<AC), đường cao AH
A)Cho AB=6cm và cosABC=3/5. Tình BC,AC,BH
B)Kẻ HD vuông góc với AD tại D , HE vuông góc với AC tại E . CM AD.AB=AE.AC
Bài 5 : Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB=4cm, AC=\(4\sqrt{3}\)cm. Giải tam giác ABC.
b) Kẻ HD,HE lần lượt vuông góc với AB,AC (D thuộc AB, E thuộc AC). Chứng minh BD.DA+CE.EA=\(AH^2\)
c) Lấy điểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I Chứng minh \(sinAMB.sinACB=\dfrac{HI}{CM}\) GIẢI HỘ E PHẦN C THÔI Ạ
Cho tam giác ABC vuông tại A (AB>AC), đường cao AH. Kẻ HD vuông góc với AB, Kẻ HE vuông góc với AC. kẻ ak vuông góc với de Gọi i là giao điểm của AH và DE.và \(AI^2=AD.AE\)
a, Chứng minh rằng: \(AI^2=DE.AE\)
b, TÍNH góc AIK
Cho tam giác ABC vuông tại A cs đường cao AH . Biết HB = 2 cm , HC = 8cm. a, Tính AH AC AB . b, kẻ HD vuông góc với AB , HE vuông góc với AC , Chứng minh DE=AH . c, gọi M là trung điểm BH , Chứng minh DM vuông góc với DE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Biết AB=4cm, AC=6cm.
a) Chứng minh : AD.AB=AE.AC
b) Tính độ dài AE
c) Kẻ phân giác AI của góc BAC. Tính độ dài HI
d) Đường thẳng vuông góc với DE tại D cắt BC tại M. Chứng minh M là trung điểm của BH
Bài 2 : Cho tam giác ABC vuông ở A. Gỉa sử D là 1 điểm trên cạnh huyền BC và E.F lần lượt là hình chiếu của D lên các cạnh AB, AC. CMR : AE.EB + AF.FC=BD.DC
Cho tam giác abc vuông tại A (AB<AC), đường cao AH . Kẻ HD,HE lần lượt vuông góc với AB,AC.Đường thẳng qua A vuông góc với DE cắt BC tại I
a,CM:I là trung điểm của BC
b,Kẻ đường thẳng vuông góc với AI tại A cắt đường thẳng BD tại K.CM AB là tia phân giác của góc KAH
c,CM AD>BD + AE>EC \(\le AI^2\)
Cho tam giác ABC nhọn, vẽ đường tròn ( O; \(\dfrac{1}{2}\) BC ) cắt các cạnh AB, AC theo thứ tự tại D và E
a CM CD vuông góc với AB ; BE vuông góc với AC
b Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC
( chỉ sử dụng kiến thức của sách sgk tập 1 thôi nhé.Tại mình chưa học đến đường tròn nội tiếp)