b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH.
a) Cho AB = 6 cm và cosABC = \(\dfrac{3}{5}\). Tính BC, AC, BH.
b) Kẻ HD vuông với AB tại D, AE vuông AC tại E. Chứng minh AD.AB = AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. Chứng minh: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\).
Cho tam giác ABC nhọn có đường cao AH. Kẻ HD vuông góc với AB tại D. Cho AH=8 cm, AB=10 cm
a,Tính HB, HD
b,Kẻ HE vuông góc với AC tại E. CMR: AD.AB=AE.AC
c, Biết góc ACB=30 độ, tính diện tích tứ giác BDEC
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). Chứng minh:
a) AD.AB=AE.AC
b) Tam giác AED ~ Tam giác ABC
Cho tam giác ABC vuông tại A (AB < AC) , đường cao AH.
a) AB=6 cm, cos ABC = 3/5 . Tính BC,AC,AH.
b) Kẻ HD vuông góc với AB, HE vuông góc với AC . c/m: AD.AB=AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. c/m: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
Cho tam giác nhọn ABC, AH là đường cao. Vẽ HD vuông góc với AB tại F, HE vuông góc với AC tại E.
Chứng minh: a) AD.AB=AE.AC
b)AD : BD= AH2 : BH2
cho tam giác ABC nhọn, đường cao Ah. Kẻ HD vuông góc AB tại D. HE vuông góc AC tại E. Chứng minh:
a)AD.AB=AE.AC
b)Góc BDE + góc ECB = 180độ
Câu A mình làm được, giúp mình câu B nhé!
Bài 5 : Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB=4cm, AC=\(4\sqrt{3}\)cm. Giải tam giác ABC.
b) Kẻ HD,HE lần lượt vuông góc với AB,AC (D thuộc AB, E thuộc AC). Chứng minh BD.DA+CE.EA=\(AH^2\)
c) Lấy điểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I Chứng minh \(sinAMB.sinACB=\dfrac{HI}{CM}\) GIẢI HỘ E PHẦN C THÔI Ạ
Cho tam giác ABC vuông tại A, AB=4.5, AC=6. Kẻ AH vuông góc với BC.
a, Tính BC,AH,CH,BH
b, tính góc B, góc C
c, CHứng minh: AD.AB=AE.AC
( giải dùm mình câu c vs ạ)
cho tam giác ABC vuông tại A(AB<AC), đường cao AH.Gọi D và E lần lượt là các đường vuông góc kẻ từ H xuống AB và AC
a, cho BH=4cm ,CH=9cm. Tính AH, DE
b,CM: AD.AB=AE.AC