Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mon an

Cho tam giác ABC vuông tại A cs đường cao AH . Biết HB = 2 cm , HC = 8cm. a, Tính AH AC AB . b, kẻ HD vuông góc với AB , HE vuông góc với AC , Chứng minh DE=AH . c, gọi M là trung điểm BH , Chứng minh DM vuông góc với DE

Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 23:05

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM


Các câu hỏi tương tự
Love Panda
Xem chi tiết
caca caca
Xem chi tiết
Trần Thị Liên
Xem chi tiết
Thảo Phươngg Nguyễnn
Xem chi tiết
Nguyen King
Xem chi tiết
Nguyễn Thu Giang
Xem chi tiết
Nguyễn Diệp Ngọc Ánh
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
Seok Jin
Xem chi tiết