Bài 1: Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Kẻ đường cao AH
a) Giải tam giác vuông ABC (góc làm tròn đến phút).
b) Gọi G, K là hình chiếu của H lần lượt lên AB và AC. Chứng minh rằng: AG.AB=AK.AC
Bài 2: Cho vuông tại A, đường cao AH có , đường cao AH có HB=9cm,HC=16cm
a) Tính AB, AC và AH.
b) Hạ HD vuông góc AB,HE vuông góc AC . Tính chu vi và diện tích tứ giác ADHE.
cho tam giác ABC có 3 góc nhọn ( AB < AC ) và nội tiếp đường tròn ( O ). Vẽ đường cao AH, ( H thuộc BC ) , từ H kẻ HM vuông góc với AB ( M thuộc AB ) và kẻ HN vuông góc với AC ( N thuộc AC ). Vẽ đường kính AE của đường tròn ( O ) cắt MN tại I. Tia MN cắt ( O) tại K. chứng minh rằng
a, AMHN nội tiếp
b, \(\Delta AMN\sim\Delta ACB\)
c, CEIN nội tiếp và tam giác AHK cân
Cho ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC) và AH là đường cao của tam giác. Gọi M, N lần lượt là hình chiếu vuông góc của H lên AB, AC. Kẻ NE vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt tia AH tại D và AD cắt đường tròn tại F. Chứng minh :
a) ABC + ACB = BIC và tứ giác DENC nội tiếp;
b) AM.AB = AN.AC và tứ giác BFIC là hình thang cân;
c) Tứ giác BMED nội tiếp.
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB, AC.
a) Cho AB = 9cm, HB= 4,5cm, Tính các cạnh AC, BC, AH( làm tròn đến độ) ?
b) CMR: a) góc AEF = góc ACB
c) Tính diện tích tam giác FAE biết AH = 2cm, BC = 4cm
d) Qua E kẻ EM vuôg góc FE , qua F kẻ FN vuôg góc FE( M,N thuộc BC). CMR:M, N là trung điểm HB,HC
e) Cho BC cố định. Tìm vị trí điểm A sao cho:
e.1) Độ dài đoạn thẳng FE lớn nhất?
e.2) Diện tích tgiac AFE lớn nhất?
e.3)Diện tích tứ giác AEHF lớn nhất?
(ko cần vẽ hình)
Cho tam giác ABC vuông tại A có góc B = 60 độ, đường cao AH.
a) Biết BC = 6cm, hãy tính độ dài các đoạn AB, AC, CH?
b) Trên tia đối của tia BA lấy điểm D sao cho DB=BC, từ A kẻ đường thẳng vuông góc với CD tại K. Chứng minh: \(\dfrac{1}{KD.DC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
c) Chứng minh: \(\tan D=\dfrac{DB}{DC}\)
Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM. Biết AH=3cm; HB=4cm. Hãy tính AB,AC,AM và diện tích tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH, biết AB=9cm; AC=12cm
a)Giải tam giác ABC
b)Tính AH
c)Gọi E,F lần lượt là hình chiếu của hình trên AB, AC. Chứng minh: AE.AB=AF.AC
d)Tính diện tích của tứ giác BEFC
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ AD là đường kính của (O), AH vuông góc với BC tại H, BE vuông góc với AD tại E. Gọi G là giao điểm của AH với (O).
a) Chứng minh tứ giác ABHE nội tiếp và GD ∥ BC;
b) Gọi N là giao điểm giữa HE và AC. Chứng minh tam giác AHN vuông tại N;
c) Tia phân giác của góc BAC cắt đường tròn (O) tại F. Gọi M là giao điểm của OF và BC, K là trung điểm của AB, I là giao điểm của KM và HE. Chứng minh rằng AB·EI = AE·EM.
Cho tam giác ABC vuông tại A, Kẻ đường cao AH và phân giác BE của góc
ABC (H thuộc BC, E thuộc AC), Kẻ AD vuông góc với BE (D thuộc BE).
a) Chứng minh rằng tứ giác ADHB là tứ giác nội tiếp, xác định tâm O đường tròn
ngoại tiếp tứ giác ADHB (gọi là đường tròn (O)).
b) Chứng minh góc EAD = góc HBD và OD song song với HB.
c) Cho biết số đo góc ABC=60 độ và AB = a (a > 0 cho trước). Tính theo a diện tích
phần tam giác ABC nằm ngoài đường tron (O).