Thu gọn:
A=(1+sinx) tan2 x(1-sinx)
==> (1-sin2x) tan2x
Phải k mn
Giúp mình với mn...
1)cos2x+cos22x+cos23x+cos24x=2
2) (1-tanx) (1+sin2x)=1+tanx
3) tan2x=sin3x.cosx
4) tanx +cot2x=2cot4x
5) sinx+sin2x+sin3x=cosx+cos2x+cos3x
6)sinx=√2 sin5x-cosx
7) 1/sin2x + 1/cos2x =2/sin4x
8) sinx+cosx=cos2x/1-sin2x
9)1+cos2x/cosx= sin2x/1-cos2x
10)sin3x+cos3x/2cosx-sinx=cos2x
\(sinx+4cosx=2+sin2x\)
\(\left(1-sin2x\right)\left(sinx+cosx\right)=cos2x\)
\(1+sinx+cosx+sin2x+cos2x=0\)
\(sinx+sin2x+sin3x=1+cosx+cos2x\)
\(sin^22x-cos^28x=sin\left(\dfrac{17\pi}{2}+10x\right)\)
Chứng minh các đẳng thức :
a) sin3x = 3sinx - 4sin3x
b) tan 2x + 1/cos2x = 1-2sin2x/1-sin2x
c) (cosx+sinx/cosx-sinx) - (cosx-sinx/cosx+sinx) = 2tan 2x
d) sin2x/1+cos2x = tanx
e)
a/ \(sin3x=sin\left(2x+x\right)=sin2xcosx+cos2x.sinx\)
\(=2sinxcos^2x+\left(1-2sin^2x\right)sinx=2sinx\left(1-sin^2x\right)+sinx-2sin^3x\)
\(=3sinx-4sin^3x\)
b/
\(tan2x+\frac{1}{cos2x}=\frac{sin2x}{cos2x}+\frac{1}{cos2x}=\frac{sin2x+1}{cos2x}=\frac{2sinxcosx+sin^2x+cos^2x}{cos^2x-sin^2x}\)
\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx+cosx\right)\left(cosx-sinx\right)}=\frac{sinx+cosx}{cosx-sinx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx\right)}{\left(cos-sinx\right)^2}\)
\(=\frac{cos^2x-sin^2x}{cos^2x+sin^2x-2sinxcosx}=\frac{1-2sin^2x}{1-sin2x}\)
c/
\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{cos^2x-sin^2x}\)
\(=\frac{2sinxcosx+2sinxcosx}{cos2x}=\frac{4sinxcosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)
d/
\(\frac{sin2x}{1+cos2x}=\frac{2sinxcosx}{1+2cos^2x-1}=\frac{2sinxcosx}{2cos^2x}=\frac{sinx}{cosx}=tanx\)
e/
1. Cos² 3x = 1
2.Sinx = 1 - cos²x
3.Tìm nghiệm € (0;2x) của phương trình cos - 2x + sinx=0
4.Sin2x + sinx = 0
5.căn 2 cos (x+pi/3) = 1
1: =>sin^2(3x)=0
=>sin 3x=0
=>3x=kpi
=>x=kpi/3
2:
\(sinx=1-cos^2x=sin^2x\)
=>\(sin^2x-sinx=0\)
=>sin x(sin x-1)=0
=>sin x=0 hoặc sin x=1
=>x=pi/2+k2pi hoặc x=kpi
4:
sin 2x+sin x=0
=>sin 2x=-sin x=sin(-x)
=>2x=-x+k2pi hoặc 2x=pi+x+k2pi
=>x=pi+k2pi hoặc x=k2pi/3
5: =>cos(x+pi/3)=1/căn 2
=>x+pi/3=pi/4+k2pi hoặc x+pi/3=-pi/4+k2pi
=>x=-pi/12+k2pi hoặc x=-7/12pi+k2pi
Cho x thỏa mãn phương trình sin 2 x + sin x − cos x = 1 . Tính sin x − π 4 .
A. sin x − π 4 = 0 h o ặ c sin x − π 4 = 1
B. sin x − π 4 = 0 h o ặ c sin x − π 4 = 2 2
C. sin x − π 4 = − 2 2
D. sin x − π 4 = 0 h o ặ c sin x − π 4 = − 2 2
Đặt t = sin x − cos x = 2 sin x − π 4 .
Điều kiện − 2 ≤ t ≤ 2 .
Ta có t 2 = sin x − cos x 2 = sin 2 x + cos 2 x − 2 sin x cos x ⇒ sin 2 x = 1 − t 2 .
Phương trình đã cho trở thành 1 − t 2 + t = 1 ⇔ t 2 − t = 0 ⇔ t = 0 t = 1 .
Với t = 1, ta được 2 sin x − π 4 = 1 ⇔ sin x − π 4 = 1 2 .
Với t = 0, ta được 2 sin x − π 4 = 0 ⇔ sin x − π 4 = 0.
Chọn đáp án B.
Cho x thỏa mãn phương trình
sin2x+sinx-cosx=1 Tính sin x - π 4 ?
Chọn B
Bổ trợ kiến thức: Ta có thế giải bằng máy tính cầm tay CASIO fx-570VN PLUS như sau, đâu tiên dùng lệnh SHIFT SOLVE để xem 1 nghiệm bất kì có thể có của phương trình đã cho:
Đến đây ta dễ dàng chọn được phương án B là phương án đúng thay cho lời giải tự luận nhiều phức tạp.
giải phương trình sau:
a,\(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}=0\)
b,\(\frac{\left(1+sinx+cos2x\right)sinx\left(x+\frac{\pi}{4}\right)}{1+tanx}=\frac{1}{\sqrt{2}}cosx\)
c,\(\frac{\left(1-sin2x\right)cosx}{\left(1+sin2x\right)\left(1-sinx\right)}=\sqrt{3}\)
d,\(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)
Giải pt
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(sin2x-cos2x+3sinx-cosx-1=0\)
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Giaỉ các phương trình lượng giác sau:
1. 2sin2x+3sinx=3cosx
2. sin2x-4(sinx-cosx)=4
3. (1+sinx)(1+cosx)=2
4. 2(sinx-cosx)-sin2x-1=0
5. sinx-cosx+4sinxcosx+1=0
6. sinx=2cos\(^3\)x
7. cosx=2sin\(^3\)x
8. 2cos\(^3\)x=sin3x
1.
\(\Leftrightarrow4sinx.cosx+3\left(sinx-cosx\right)=0\)
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(2\left(1-t^2\right)+3t=0\)
\(\Leftrightarrow-2t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=2\left(l\right)\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow sinx-cosx=-\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\\x=\frac{5\pi}{4}-arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
2.
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(1-t^2-4t=4\)
\(\Leftrightarrow t^2+4t+3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sinx-cosx=-1\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{3\pi}{2}+k2\pi\end{matrix}\right.\)
3.
\(\Leftrightarrow1+cosx+sinx+sinx.cosx=2\)
\(\Leftrightarrow2\left(sinx+cosx\right)+2sinx.cosx-2=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(2t+t^2-1-2=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sinx+cosx=1\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)