Bài 1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0 ĐẾN 180 ĐỘ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
An Sơ Hạ

Chứng minh các đẳng thức :

a) sin3x = 3sinx - 4sin3x

b) tan 2x + 1/cos2x = 1-2sin2x/1-sin2x

c) (cosx+sinx/cosx-sinx) - (cosx-sinx/cosx+sinx) = 2tan 2x

d) sin2x/1+cos2x = tanx

e)

Nguyễn Việt Lâm
9 tháng 4 2019 lúc 18:07

a/ \(sin3x=sin\left(2x+x\right)=sin2xcosx+cos2x.sinx\)

\(=2sinxcos^2x+\left(1-2sin^2x\right)sinx=2sinx\left(1-sin^2x\right)+sinx-2sin^3x\)

\(=3sinx-4sin^3x\)

b/

\(tan2x+\frac{1}{cos2x}=\frac{sin2x}{cos2x}+\frac{1}{cos2x}=\frac{sin2x+1}{cos2x}=\frac{2sinxcosx+sin^2x+cos^2x}{cos^2x-sin^2x}\)

\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx+cosx\right)\left(cosx-sinx\right)}=\frac{sinx+cosx}{cosx-sinx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx\right)}{\left(cos-sinx\right)^2}\)

\(=\frac{cos^2x-sin^2x}{cos^2x+sin^2x-2sinxcosx}=\frac{1-2sin^2x}{1-sin2x}\)

c/

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{cos^2x-sin^2x}\)

\(=\frac{2sinxcosx+2sinxcosx}{cos2x}=\frac{4sinxcosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

d/

\(\frac{sin2x}{1+cos2x}=\frac{2sinxcosx}{1+2cos^2x-1}=\frac{2sinxcosx}{2cos^2x}=\frac{sinx}{cosx}=tanx\)

e/


Các câu hỏi tương tự
Awayuki Himeno
Xem chi tiết
Bành Thụy Hóii
Xem chi tiết
nanako
Xem chi tiết
ĐỖ THỊ THANH HẬU
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Anh Trâm
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
tran duc huy
Xem chi tiết
tran duc huy
Xem chi tiết