Đặt t = sin x − cos x = 2 sin x − π 4 .
Điều kiện − 2 ≤ t ≤ 2 .
Ta có t 2 = sin x − cos x 2 = sin 2 x + cos 2 x − 2 sin x cos x ⇒ sin 2 x = 1 − t 2 .
Phương trình đã cho trở thành 1 − t 2 + t = 1 ⇔ t 2 − t = 0 ⇔ t = 0 t = 1 .
Với t = 1, ta được 2 sin x − π 4 = 1 ⇔ sin x − π 4 = 1 2 .
Với t = 0, ta được 2 sin x − π 4 = 0 ⇔ sin x − π 4 = 0.
Chọn đáp án B.