Giải Pt. Tìm nghiệm \(x\in\left[0;2\pi\right]\)
2sin( x+\(\frac{\pi}{6}\)) + \(\sqrt{3}\) = 0
Bài 1: Cho pt \(^{x^2}-2\left(m-1\right)x+m^2=0\) (m là tham số) (1)
a) Giải pt khi m=1
b) Tìm m để pt (1) có một nghiệm bằng 1. Tìm nghiệm còn lại
c) Tìm m để pt (1) có một nghiệm bằng -3. Tìm nghiệm còn lại
giúp mk vs
a Khi m=1 thì (1) sẽ là x^2+1=0
=>x thuộc rỗng
b: Thay x=1 vào (1),ta được:
1^2-2(m-1)+m^2=0
=>m^2+1-2m+2=0
=>m^2-2m+3=0
=>PTVN
c: Thay x=-3 vào pt, ta được:
(-3)^2-2*(m-1)*(-3)+m^2=0
=>m^2+9+6(m-1)=0
=>m^2+6m+3=0
=>\(m=-3\pm\sqrt{6}\)
Cho pt: \(\left(x+m-3\right)\left[x^2+2\left(m+3\right)x+3m-9\right]=0\)
a) Giải pt với m=3
b) Tìm m để pt có 2 nghiệm dương và 1 nghiệm âm
1. Tìm \(m\in\left[-10;10\right]\) để pt \(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) có 4 ng pb
2. Cho biết x1,x2 là nghiệm của pt \(x^2-x+a=0\) và x3,x4 là nghiệm của pt \(x^2-4x+b=0\) . Biết rằng \(\dfrac{x2}{x1}=\dfrac{x3}{x2}=\dfrac{x4}{x3}\), b >0 . Tìm a
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
giải chi tiết với ak
cho pt ẩn x: \(x^2-2\left(m-3\right)x+m^2+3=0\) với m là tham số
a) tìm giá trị của m để pt có 2 nghiệm
b) gọi \(x_1,x_2\) là 2 nghiệm của pt. tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn hệ thức \(\left(x_1-x_2\right)^2-5x_1x_2=4\)
a) ∆' = [-(m - 3)]² - (m² + 3)
= m² - 6m + 9 - m² - 3
= -6m + 6
Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0
⇔ -6m + 6 ≥ 0
⇔ 6m ≤ 6
⇔ m ≤ 1
Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm
b) Theo định lý Viét, ta có:
x₁ + x₂ = 2(m - 3) = 2m - 6
x₁x₂ = m² + 3
Ta có:
(x₁ - x₂)² - 5x₁x₂ = 4
⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4
⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4
⇔ (x₁ + x₂)² - 9x₁x₂ = 4
⇔ (2m - 6)² - 9(m² + 3) = 4
⇔ 4m² - 24m + 36 - 9m² - 27 = 4
⇔ -5m² - 24m + 9 = 4
⇔ 5m² + 24m - 5 = 0
⇔ 5m² + 25m - m - 5 = 0
⇔ (5m² + 25m) - (m + 5) = 0
⇔ 5m(m + 5) - (m + 5) = 0
⇔ (m + 5)(5m - 1) = 0
⇔ m + 5 = 0 hoặc 5m - 1 = 0
*) m + 5 = 0
⇔ m = -5 (nhận)
*) 5m - 1 = 0
⇔ m = 1/5 (nhận)
Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu
a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)
\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)
\(=4m^2-24m+36-4m^2-12=-24m+24\)
Để phương trình có hai nghiệm thì \(\Delta>=0\)
=>-24m+24>=0
=>-24m>=-24
=>m<=1
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2-5x_1x_2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)
=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)
=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)
=>\(4m^2-24m+36-9m^2-27-4=0\)
=>\(-5m^2-24m+5=0\)
=>\(-5m^2-25m+m+5=0\)
=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)
=>(m+5)(-5m+1)=0
=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)
Cho pt bậc hai: \(2x^2-\left(m+1\right)x+m+1=0\) (1)
a, giải pt (1) khi m=-3
b, Tìm m để pt (1) có nghiệm.
a, Thay m=-3 vào pt ta có:
\(\left(1\right)\Leftrightarrow2x^2-\left(m+1\right)x+m+1=0\\ \Leftrightarrow2x^2-\left(-3+1\right)x+\left(-3\right)+1=0\\ \Leftrightarrow2x^2-\left(-2\right)x-2=0\\ \Leftrightarrow x^2+x-1=0\)
\(\Delta=1^2-4.1\left(-1\right)=1+4=5\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b, Ta có: \(\Delta=\left[-\left(m+1\right)\right]^2-4.2\left(m+1\right)\\ =\left(m+1\right)^2-8\left(m+1\right)\\ =m^2+2m+1-8m-8\\ =m^2-6m-7\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow m^2-6m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-1\\m\ge7\end{matrix}\right.\)
Giải Pt. Tìm nghiệm \(x\in\left[0;2\pi\right]\)
sin3x = 0
\(sin3x=0\Leftrightarrow3x=k\pi\)
\(\Leftrightarrow x=\frac{k\pi}{3}\)
Do \(x\in\left[0;2\pi\right]\Rightarrow0\le\frac{k\pi}{3}\le2\pi\Rightarrow0\le k\le6\)
\(\Rightarrow x=\left\{0;\frac{\pi}{3};\frac{2\pi}{3};\pi;\frac{4\pi}{3};\frac{5\pi}{3};2\pi\right\}\)
Cho\(\left(m-2\right)x^2-2\left(m-2\right)x+3=0\)
a)tìm m để pt có nghiệm kép
b)tìm m để pt co 2 nghiệm phân biệt
c)tìm m để pt có nghiệm
d)tìm m để pt vô nghiệm
\(\Delta'=\left(m-2\right)^2-3\left(m-2\right)=\left(m-2\right)\left(m-5\right)\)
a.
Phương trình có nghiệm kép khi:
\(\left\{{}\begin{matrix}a=m-2\ne0\\\Delta'=\left(m-2\right)\left(m-5\right)=0\end{matrix}\right.\) \(\Rightarrow m=5\)
b.
Phương trình có 2 nghiệm pb khi:
\(\left\{{}\begin{matrix}m-2\ne0\\\left(m-2\right)\left(m-5\right)>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>5\\m< 2\end{matrix}\right.\)
c.
- Với \(m=2\) pt vô nghiệm
- Với \(m\ne2\) pt có nghiệm khi: \(\left(m-2\right)\left(m-5\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge5\\m< 2\end{matrix}\right.\)
d.
Pt vô nghiệm khi: \(\left[{}\begin{matrix}m=2\\\left(m-2\right)\left(m-5\right)< 0\end{matrix}\right.\)
\(\Rightarrow2\le m< 5\)
2. Cho PT
\(x^2-2\left(m+1\right)x+m^2+2=0\)
a) giải PT khi m=1
b) Tìm m để PT có 2 nghiệm phân biệt sao cho:
\(x^2_1+x_2^2=10\)
\(a,m=1\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
\(b,\) PT có 2 nghiệm pb \(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2+2\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2-8>0\\ \Leftrightarrow8m-4>0\Leftrightarrow m>\dfrac{1}{2}\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow4\left(m+1\right)^2-2\left(m^2+2\right)=10\\ \Leftrightarrow4m^2+8m+4-2m^2-4=10\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow m^2+4m-5=0\\ \Leftrightarrow\left(m+5\right)\left(m-1\right)=0\Leftrightarrow m=1\left(m>\dfrac{1}{2}\right)\)
Vậy m=1 thỏa mãn đề bài
\(x^2-\left(a+2\right)x+2a=0\) (1)
a. Giải pt với a=-1
b. Tìm giá trị của a để pt (1) có 2 nghiệm x1,x2. Thỏa mãn
\(x_1^2=19-x^2\left(x_1+x_2\right)\)