Cho 2 đa thức M=6x2+3xy-2y2 ; N=3y2-2x2-3xy.
Chứng minh rằng không tồn tại giá trị nào của x để 2 đa thức có cùng giá trị âm
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
Bài 1:
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
\(1,\\ a,=3x\left(x-3y\right)\\ b,=\left(x-5\right)^2-9y^2=\left(x-3y-5\right)\left(x+3y-5\right)\\ c,=3x\left(x-y\right)-2\left(x-y\right)=\left(3x-2\right)\left(x-y\right)\\ 2,\\ Sửa:x^2-6x+10=\left(x-3\right)^2+1\ge1>0,\forall x\)
1, =3x (2x -3y)
c, = 3x(x-y) -2(x-y)
= (3x-2)(x-y)
2, Ta có: x2 -6x+10= (x-3)2 +11
Nhận xét: (x-3)2 >= 0 với mọi số thực x
=> (x-3)2 +1 >= 1 >0 (đpcm)
Cho hai đa thức N = 5 x 2 - 3 x y , M = 5 x y + 2 x 2 - 2 y 2 . Tìm đa thức P biết P + N = M
A. - 3 x 2 + 8 x y - 2 y 2
B. 7 x 2 + 2 x y - 2 y 2
C. - 3 x 2 - 8 x y + 2 y 2
D. - x 2 + 8 x y + 2 y 2
Chọn A
Ta có P + N = M ⇒ P = M - N
= 5xy + 2x2- 2y2-5x2+ 3xy
= -3x2+ 8xy - 2y2
Cho đa thức:
M= 2x2 + 3xy + 2y2
N= -5x2 - 3xy + 2y2 + 5
Tính M+N ; M-N ; N-M
__________________CẦN GẤP Ạ OvO________________
\(M+N=\left(2x^2+3xy+2y^2\right)+\left(-5x^2-3xy+2y^2+5\right)\\ =2x^2+3xy+2y^2-5x^2-3xy+2y^2+5\\ =-3x^2+4y^2+5\\ M-N=\left(2x^2+3xy+2y^2\right)-\left(-5x^2-3xy+2y^2+5\right)\\ =2x^2+3xy+2y^2+5x^2+3xy-2y^2-5\\ =7x^2+6xy-5\)
\(N-M=\left(-5x^2-3xy+2y^2+5\right)-\left(2x^2+3xy+2y^2\right)\\ =-5x^2-3xy+2y^2+5-2x^2-3xy-2y^2\\ =-7x^2-6xy+5\)
phân tích đa thức thành nhân tử
a,6x2 + 7xy + 2y2
b,) x2 – y2 + 10x – 6y + 16
c,4x4 + y4
a) 6x² + 7xy + 2y²
= 6x² + 4xy + 3xy + 2y²
= (6x² + 4xy) + (3xy + 2y²)
= 2x(3x + 2y) + y(3x + 2y)
= (3x + 2y)(2x + y)
b) x² - y² + 10x - 6y + 16
= x² + 10x + 25 - y² - 6y - 9
= (x² + 10x + 25) - (y² + 6y + 9)
= (x + 5)² - (y + 3)²
= (x + 5 - y - 3)(x + 5 + y + 3)
= (x - y + 2)(x + y + 8)
c) 4x⁴ + y⁴
= 4x⁴ + 4x²y² + y⁴ - 4x²y²
= (2x² + y²)² - (2xy)²
= (2x² + y² - 2xy)(2x² + y² + 2xy)
Tìm đa thức M,N biết
a , M + ( 5x2-2xy ) = 6x2 + 9xy - y2
b, ( 3xy - 4y2) - N = x2 - 7xy + 8y2
a) Ta có: \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
Vậy: \(M=x^2+11xy-y^2\)
b) Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
Vậy: \(N=-x^2+10xy-12y^2\)
Tìm đa thức M, N biết :
a/ M + (5x2 – 2xy) = 6x2 + 9xy – y2
b/(3xy – 4y2)- N = x2 – 7xy + 8y2
a, (6x2+9xy-y2) - ( 5x2-2xy)=M
=> M= (6x2+9xy-y2) - ( 5x2-2xy)
=> M= 6x2+9xy-y2 - 5x2+2xy
=> M=(6x2- 5x2)+(9xy+2xy)-y2
=>M= 1x2 + 11xy - y2
Vậy M= 1x2 + 11xy - y2
b, N= (3xy-4y2) - (x2-7xy+8y2)
=> N= 3xy-4y2 - x2+7xy-8y2
=> N= (3xy+7xy)-(4y2+8y2)-x2
=> N= 10xy - 12y2 -x2
Vậy N= 10xy - 12y2 -x2
a: Ta có: \(M+5x^2-2xy=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
b: Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
tìm đa thức A biết
2A+(2x2+y2)=6x2=5y2-2x2y2
2A-(xy + 3x2 -2y2 ) = x2 -8y+xy
A+(3x2y - 2xy2 ) = 2x2y = 4xy3
a: Sửa đề: \(2A+\left(2x^2+y^2\right)=6x^2+5y^2-2x^2y^2\)
=>\(2A=6x^2+5y^2-2x^2y^2-2x^2-y^2\)
=>\(2A=4x^2+4y^2-2x^2y^2\)
=>\(A=2x^2+2y^2-x^2y^2\)
b: \(2A-\left(xy+3x^2-2y^2\right)=x^2-8y+xy\)
=>\(2A=x^2-8y+xy+xy+3x^2-2y^2\)
=>\(2A=4x^2+2xy-8y-2y^2\)
=>\(A=2x^2+xy-4y-y^2\)
c: Sửa đề: \(A+\left(3x^2y-2xy^2\right)=2x^2y+4xy^3\)
=>\(A=2x^2y+4xy^3-3x^2y+2xy^2\)
=>\(A=-x^2y+4xy^3+2xy^2\)
Cho các đa thức A = 4 x 2 - 5 x y + 3 y 2 ; B = 3 x 2 + 2 x y + y 2 ; C = - x 2 + 3 x y + 2 y 2 . Tính A + B + C
A. 7 x 2 + 6 y 2
B. 5 x 2 + 5 y 2
C. 6 x 2 + 6 y 2
D. 6 x 2 - 6 y 2