Violympic toán 9

Lê Đình Quân

Cho f(x) là đa thức với hệ số nguyên .Biết f(2017).f(2018)=2019. Chứng minh phương trình f(x)=0 không có nghiệm

Akai Haruma
Akai Haruma Giáo viên 2 tháng 3 2020 lúc 22:46

Nếu muốn chỉ $f(x)=0$ không có nghiệm thì chừng ấy đk không đủ để CM. Mình sửa đề thành chứng minh $f(x)=0$ không có nghiệm nguyên.

----------------------------

Giả sử $f(x)=0$ có nghiệm nguyên $x=a$. Khi đó, đặt $f(x)=(x-a)g(x)$

Ta có:

$f(2017)=(2017-a)g(2017)$

$f(2018)=(2018-a)g(2018)$

$\Rightarrow (2017-a)(2018-a)g(2017)g(2018)=f(2017)f(2018)=2019$

Với $a$ nguyên thì $(2017-a)(2018-a)$ là tích 2 số nguyên liên tiếp. Do đó $(2017-a)(2018-a)\vdots 2$

$\Rightarrow 2019\vdots 2$ (vô lý)

Do đó PT $f(x)=0$ không có nghiệm nguyên.

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN