Chương I - Căn bậc hai. Căn bậc ba

LoHoTu

Cho a,b,c thuộc (0,1) thỏa mãn: abc=(1-a)(1-b)(1-c). Chứng minh rằng \(a^2+b^2+c^2>=\dfrac{3}{4}\)

Akai Haruma
27 tháng 1 2019 lúc 20:31

Lời giải:

\(abc=(1-a)(1-b)(1-c)\Rightarrow \frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=1\)

Đặt \(\left(\frac{1-a}{a};\frac{1-b}{b}; \frac{1-c}{c}\right)=(x,y,z)\Rightarrow (a,b,c)=\left(\frac{1}{x+1}; \frac{1}{y+1}; \frac{1}{z+1}\right)\)

Bài toán trở thành

Cho $x,y,z>0$ thỏa mãn $xyz=1$. CMR:

\(A=\frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2}\geq \frac{3}{4}\)

------------------------

Thật vậy:

Áp dụng BĐT Bunhiacopxky:

\((x+1)^2\leq (x+\frac{1}{y})(x+y)\Rightarrow \frac{1}{(x+1)^2}\geq \frac{y}{(xy+1)(x+y)}\)

\((y+1)^2\leq (y+\frac{1}{x})(y+x)\Rightarrow \frac{1}{(y+1)^2}\geq \frac{x}{(xy+1)(x+y)}\)

\(\Rightarrow A\geq \frac{y}{(xy+1)(x+y)}+\frac{x}{(xy+1)(x+y)}+\frac{1}{(z+1)^2}\)

\(A\geq \frac{x+y}{(xy+1)(x+y)}+\frac{1}{(z+1)^2}=\frac{1}{xy+1}+\frac{1}{(z+1)^2}\)

\(A\geq \frac{1}{\frac{1}{z}+1}+\frac{1}{(z+1)^2}=\frac{z^2+z+1}{(z+1)^2}(*)\)

\(\frac{z^2+z+1}{(z+1)^2}-\frac{3}{4}=\frac{(z-1)^2}{4(z+1)^2}\geq 0\Rightarrow \frac{z^2+z+1}{(z+1)^2}\geq \frac{3}{4}(**)\)

Từ \((*); (**)\Rightarrow A\geq \frac{3}{4}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c=\frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
Trần Minh Tâm
Xem chi tiết
Vũ Đức Huy
Xem chi tiết
Hoàng
Xem chi tiết
Nguyễn Hà Linh
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Kresol♪
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết
Quân Lê
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết