Chương 4: GIỚI HẠN

Khánh Đan
2 tháng 6 lúc 20:47

undefined

Bình luận (0)
Khánh Đan
31 tháng 5 lúc 17:51

4/ Ta có: \(\lim\limits_{x\rightarrow\infty}\dfrac{2x^2+3}{x^3-2x+1}=\lim\limits_{x\rightarrow\infty}\dfrac{\dfrac{2}{x}+\dfrac{3}{x^3}}{1-\dfrac{2}{x^2}+\dfrac{1}{x^3}}=\dfrac{0}{1}=0\)

Bình luận (0)
Quang Nhân
31 tháng 5 lúc 17:52

\(\lim\limits_{x\rightarrow\infty}\dfrac{2x^2+3}{x^3-2x+1}\)

\(=\lim\limits_{x\rightarrow\infty}\dfrac{\dfrac{2}{x}+\dfrac{3}{x^3}}{1-\dfrac{2}{x^2}+\dfrac{1}{x^3}}=0\)

Bình luận (0)
Quang Nhân
31 tháng 5 lúc 17:49

\(\lim\limits_{x\rightarrow\infty}\dfrac{2x^2+3x+1}{3x^2-x+5}\)

\(=\lim\limits_{x\rightarrow\infty}\dfrac{2+\dfrac{3}{x}+\dfrac{1}{x^2}}{3-\dfrac{1}{x}+\dfrac{5}{x^2}}=\lim\limits_{x\rightarrow\infty}\dfrac{2}{3}=\dfrac{2}{3}\)

 

 

 

 

Bình luận (0)
Trần Ái Linh
22 tháng 5 lúc 17:31

Gọi `M(x,y)` là điểm thuộc TT.

`y'=3x^2+2x`

TT song song với `y=8x+9=> f'(x_0)=8`

`=> 3x_0^2+2x_0=8`

`<=>` \(\left[{}\begin{matrix}x_0=\dfrac{4}{3}\\x_0=-2\end{matrix}\right.\)

TH1: `x_0=4/3 => y_0 = 193/27`

`=>` PTTT: `y=8(x-4/3)+193/27=8x-96/27`

TH2: `x_0=-2 => y_0=-1`

`=>` PTTT: `y=8(x+2)-1=8x+15`

Bình luận (0)
Khánh Đan
22 tháng 5 lúc 17:14

Hình chiếu của SC lên (ABCD) là AC.

⇒ (SC, (ABCD)) = (SC,AC) = \(\widehat{SCA}\)

Ta có: AC = a√2

Xét tam SCA vuông tại A, có: \(tan\widehat{SCA}=\dfrac{SA}{SC}=\sqrt{3}\)

\(\Rightarrow\widehat{SCA}=60^o\)

Bình luận (0)
Nguyễn Việt Lâm
22 tháng 5 lúc 16:59

\(f\left(0\right)=1\)

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(x^2+x+1\right)=1\)

\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(x+2ax\right)=0\)

Để hàm liên tục tại \(x=0\)

\(\Leftrightarrow f\left(0\right)=\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Leftrightarrow1=1=0\) (vô lý)

Vây ko tồn tại giá trị a thỏa mãn yêu cầu

//Bạn coi lại đề chỗ \(x+2ax\) có phải là \(x^2+2a\) hoặc \(x+2a\)?

Bình luận (0)
Trần Ái Linh
22 tháng 5 lúc 17:01

Khi `x<0` : Hàm số `f(x)` liên tục tại `x=0`.

Khi `x>0`: Hàm số `f(x)` liên tục tại `x=0`.

Có:

`f(0) = 1`

\(\lim_\limits{x\to0^-}f(x)=\lim_\limits{x\to0}(x+2ax)=0\)

\(\lim_\limits{x\to0^+}f(x)(x^2+x+1)=1\)

`=>` \(\lim_\limits{x\to0^-}f(x) \ne \lim_\limits{x\to0^+} f(x)\)

`=>` Không có giá trị của a thỏa mãn.

Bình luận (0)
bach nhac lam
20 tháng 5 lúc 10:55

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-24x^2-4x+1}{\sqrt{x^2-4x+1}+5x}\) \(=\lim\limits_{x\rightarrow+\infty}\dfrac{-24x-4+\dfrac{1}{x}}{\sqrt{1-\dfrac{4}{x}+\dfrac{1}{x^2}}+5}=-\infty\)

Bình luận (0)
Nguyễn Việt Lâm
14 tháng 5 lúc 21:24

Mấy câu này bạn cần giải theo kiểu trắc nghiệm hay tự luận nhỉ?

Bình luận (0)
Trần Minh
14 tháng 5 lúc 21:26

Em cần kiểu tự luận ạ

Bình luận (0)
Nguyễn Việt Lâm
14 tháng 5 lúc 21:46

Làm tự luận thì hơi tốn thời gian đấy (đi thi sẽ không bao giờ đủ thời gian đâu)

Câu 1:

Kiểm tra lại đề, \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt[]{x}-1\right)g\left(x\right)}\) hay một trong 2 giới hạn sau: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x}-1}{g\left(x\right)}\) hoặc \(\lim\limits_{x\rightarrow1}\dfrac{g\left(x\right)}{\sqrt[]{x}-1}\)

Vì đúng như đề của bạn thì \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt[]{x}-1\right)g\left(x\right)}=\dfrac{1}{0}=\infty\), cả \(g\left(x\right)\) lẫn \(\sqrt{x}-1\) đều tiến tới 0 khi x dần tới 1

Bình luận (0)
Akai Haruma
14 tháng 5 lúc 1:08

1.

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)

\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)

 

Bình luận (0)
Akai Haruma
14 tháng 5 lúc 1:13

2.

\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:

\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)

 

Bình luận (0)
Akai Haruma
14 tháng 5 lúc 1:32

3.

\(\lim\limits_{x\to +\infty}\frac{3x^2-5\sin 2x+7\cos ^2x}{2x^2+2}=\lim\limits_{x\to +\infty}\frac{3x^2-5\sin 2x+7(1-\sin ^2x)}{2x^2+2}\)

\(=\lim\limits_{x\to +\infty}\frac{3(x^2+1)-5\sin 2x+4-7\sin ^2x}{2x^2+2}\)

\(=\lim\limits_{x\to +\infty}\left[\frac{3}{2}-5.\frac{\sin 2x}{2x}.\frac{2x}{2x^2+2}+\frac{2}{x^2+1}-7.(\frac{\sin x}{x})^2.\frac{x^2}{2x^2+2}\right]\)

\(=\frac{3}{2}-5.0.0+0-7.0.\frac{1}{2}=\frac{3}{2}\) (nhớ rằng \(\lim\limits_{t\to \infty}\frac{\sin t}{t}=0\))

Bình luận (0)
Nguyễn Việt Lâm
10 tháng 5 lúc 16:38

\(=\lim\limits_{x\rightarrow\infty}2cos\left(\dfrac{\sqrt{x+1}+\sqrt{x}}{2}\right)sin\left(\dfrac{\sqrt{x+1}-\sqrt{x}}{2}\right)\)

\(=\lim\limits_{x\rightarrow\infty}2cos\left(\dfrac{\sqrt{x+1}+\sqrt{x}}{2}\right)sin\left(\dfrac{1}{2\left(\sqrt{x+1}+\sqrt{x}\right)}\right)\)

Ta có:

\(-2\le2cos\left(\dfrac{\sqrt{x+1}+\sqrt{x}}{2}\right)\le2\) (hữu hạn)

\(\lim\limits_{x\rightarrow\infty}sin\left(\dfrac{1}{2\left(\sqrt{x+1}+\sqrt{x}\right)}\right)=sin\left(0\right)=0\)

\(\Rightarrow\lim\limits_{x\rightarrow\infty}\left(sin\sqrt{x+1}-sin\sqrt{x}\right)=0\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN