cho bieu thuc
P=\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right).\dfrac{\sqrt{x}-2}{2}\)với x>=0,x≠4
a. tim gia tri cua P khi x=64
b. rút gọn bieu thuc p
c. tim cac gia tri cua x de bieu thuc 2P nhan gia tri nguyen
cho bieu thuc
P=\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right).\dfrac{\sqrt{x}-2}{2}\)với x>=0,x≠4
a. tim gia tri cua P khi x=64
b. rút gọn bieu thuc p
c. tim cac gia tri cua x de bieu thuc 2P nhan gia tri nguyen
b: \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)
\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)
\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)=\left(5+4\sqrt{2}\right)\left[3^2-\left(2\sqrt{1+\sqrt{2}}\right)^2\right]=\left(5+4\sqrt{2}\right)\left[9-4\left(1+\sqrt{2}\right)\right]=\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)=\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=5^2-\left(4\sqrt{2}\right)^2=25-16.2=25-32=-7\)
CHO BIỂU THỨC
A=\(\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right)\)với -1<a<1
a) rút h=gọn biểu thức A
b) Tìm giá trị của A với a =\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
c) Với giá trị nào của a thì \(\sqrt{A}\)>A
a: \(A=\dfrac{3+\sqrt{1-a^2}}{\sqrt{1+a}}\cdot\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}=\sqrt{1-a}\)
b: \(a=\sqrt{3}\left(2-\sqrt{3}\right)=2\sqrt{3}-3\)
Khi \(a=2\sqrt{3}-3\) thì \(A=\sqrt{1-2\sqrt{3}+3}=\sqrt{3}-1\)
cho M=\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\) với x>0, x\(\ne\)1
a) rút gọn biểu thức M
b) tìm x để M=9/2
c) so sánh M và 4
a: \(M=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b: Để M=9/2 thì \(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}=\dfrac{9}{2}\)
=>2x-5 căn x+2=0
=>(căn x-2)(2 căn x-1)=0
=>x=1/4 hoặc x=4
c: \(M-4=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)
=>M>4
3\(\sqrt{56}-2\sqrt{98}-5\sqrt{18}-\sqrt{63}+2\sqrt{28}\)
\(3\sqrt{56}-2\sqrt{98}-5\sqrt{18}-\sqrt{63}+2\sqrt{28}=3\sqrt{4.14}-2\sqrt{49.2}-5\sqrt{9.2}-\sqrt{9.7}+2\sqrt{4.7}=3.2\sqrt{14}-2.7\sqrt{2}-5.3\sqrt{2}-3\sqrt{7}+2.2\sqrt{7}=6\sqrt{14}-14\sqrt{2}-15\sqrt{2}-3\sqrt{7}+4\sqrt{7}=6\sqrt{14}-29\sqrt{2}+\sqrt{7}\)
\(\sqrt{42-10\sqrt{17}\:}+\sqrt{33-8\sqrt{17}}\)
Giải:
\(\sqrt{42-10\sqrt{17}}+\sqrt{33-8\sqrt{17}}\)
\(=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{\left(4-\sqrt{17}\right)^2}\)
\(=\left|5-\sqrt{17}\right|+\left|4-\sqrt{17}\right|\)
\(=5-\sqrt{17}+\sqrt{17}-4\)
\(=1\)
Vậy ...
\(\sqrt{42-10\sqrt{17}}+\sqrt{33-8\sqrt{17}}=\sqrt{25-2.5.\sqrt{17}+17}+\sqrt{16-2.4.\sqrt{17}+17}=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{\left(4-\sqrt{17}\right)^2}=\left|5-\sqrt{17}\right|+\left|4-\sqrt{17}\right|=5-\sqrt{17}+\sqrt{17}-4=1\)
So sánh:
a) \(1-\sqrt{3}\) và \(2-\sqrt{6}\)
b) \(2-\sqrt{2}\) và \(\dfrac{1}{2}\)
c) \(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)
a: \(1-\sqrt{3}=\dfrac{-2}{1+\sqrt{3}}\)
\(2-\sqrt{6}=\dfrac{-2}{2+\sqrt{6}}\)
mà 1+căn 3<2+căn 6
nên 1-căn 3>2-căn 6
b: \(\left(2-\sqrt{2}\right)^2=6-4\sqrt{2}\)
(1/2)^2=1/4
mà 6-4căn 2-1/4>0
nên 2-căn 2>1/2
So sánh:
a) \(1-\sqrt{3}\) và \(2-\sqrt{6}\)
b) \(2-\sqrt{2}\) và \(\dfrac{1}{2}\)
c) \(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)
a) ta có \(2-\sqrt{6}=\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)>1-\sqrt{3}\)
b) ta có : \(2-\sqrt{2}=\dfrac{1}{2}\left(4-2\sqrt{2}\right)\)
mà ta có : \(2\sqrt{2}< 3\) (vì \(8< 9\))
\(\Rightarrow4-2\sqrt{2}>4-3>1\) \(\Rightarrow2-\sqrt{2}>\dfrac{1}{2}\)
c) ta có : \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=4008+2\sqrt{2003.2005}\)
\(\left(2\sqrt{2004}\right)^2=8016=4008+4008=4008+2\sqrt{2004.2004}\)
mà ta có : \(x^2\ge x^2-1\Rightarrow x^2>\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow4008+2\sqrt{2004.2004}>4008+2\sqrt{2003.2005}\)
\(\Rightarrow2\sqrt{2004}>\sqrt{2003}+\sqrt{2005}\)
Rút gọn:
A= \(\dfrac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}+\dfrac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}\)
\(A=\dfrac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}+\dfrac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}=\dfrac{\sqrt{3}\left(1+\sqrt{\sqrt{3}+1}\right)}{\left(1-\sqrt{\sqrt{3}+1}\right)\left(1+\sqrt{\sqrt{3}+1}\right)}+\dfrac{\sqrt{3}\left(1-\sqrt{\sqrt{3}+1}\right)}{\left(1-\sqrt{\sqrt{3}+1}\right)\left(1+\sqrt{\sqrt{3}+1}\right)}=\dfrac{\sqrt{3}\left(1+\sqrt{\sqrt{3}+1}\right)+\sqrt{3}\left(1-\sqrt{\sqrt{3}+1}\right)}{\left(1-\sqrt{\sqrt{3}+1}\right)\left(1+\sqrt{\sqrt{3}+1}\right)}=\dfrac{\sqrt{3}\left(1+\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}\right)}{1-\sqrt{3}-1}=\dfrac{\sqrt{3}.2}{-\sqrt{3}}=-2\)
Cho A= \(\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\)\(\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
a) Tìm đkxđ và rút gọn
b) Tìm x để A>-6
a) điều kiện xác định : \(x>0;x\ne1\)
ta có : \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x}{2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{x-1}\right)=-2\sqrt{x}\)
b) để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0< x< 9\) và \(x\ne1\)
vậy ....
Đk: x >0 ; x khác 1
sau khi rút gọn ra -2√xx
b, 9>x>0