Tìm tất cả các giá trị của m để phương trình \(m\sqrt{2+tan^2x}=m+tanx\) có ít nhất một nghiệm thực.
Tìm tất cả các giá trị của m để phương trình \(m\sqrt{2+tan^2x}=m+tanx\) có ít nhất một nghiệm thực.
\(\left(\sqrt{2}\right)^{x^2}^{+5}\ge2^{x+4}\)
giải bất phương trình loga
\(\sqrt{\log_{x} \sqrt{(7-x)}} . \log_{7}x<-1\)
tìm m để bất phương trình sau có nghiệm
\(\begin{cases} (2x+1)[ln(x+1)-lnx]=(2y+1)[ln(y+1)-lny]\\ \sqrt{y-1} -2 \sqrt[4]{(y+1)(x-1)} +m\sqrt{x+1}=0 \end{cases}\)
help me
rút gọn
a) A=\(\left(\log_{^b_a}+log^a_b+2\right)\left(log^b_a-log^b_{b.a}\right)log^a_b=1\)
b) B=\(\sqrt{log^b_a+log^a_b+2}\left(log^b_a-log^b_{ab}\right)\sqrt{log^b_a}\)
Lời giải:
Đặt \(\log_ab=x\Rightarrow \log_ba=\frac{1}{x}\)
a)
\(A=(x+\frac{1}{x}+2)(x-\frac{1}{x}).\frac{1}{x}\)
\(\Leftrightarrow A=(1+\frac{1}{x^2}+2x)(x-\frac{1}{x})=\left(1+\frac{1}{x}\right)^2(x-\frac{1}{x})\)
\(\Leftrightarrow A=(1+\log_ba)^2(\log_ab-\log_ba)\)
-------------------------------------------------------
b) Điều kiện: \(x>0\)
Có \(1=\log_{ab}b.\log_b(ab)=\log_{ab}b(\log_ba+\log_bb)=\log_{ab}b(\frac{1}{x}+1)\)
\(\Rightarrow \log_{ab}b=\frac{x}{x+1}\)
Như vậy:
\(B=\sqrt{x+\frac{1}{x}+2}(x-\frac{x}{x+1})\sqrt{x}\)
\(\Leftrightarrow B=\sqrt{x^2+1+2x}(x-\frac{x}{x+1})=|x+1|.\frac{x^2}{x+1}\)
\(=(x+1)\frac{x^2}{x+1}=x^2=\log_a^2b\) (do \(x>0)\)
tập xác định hàm số y= \(\sqrt{2-ln\left(ex\right)}\)
Lời giải:
Ta có: \(2-\ln (ex)=2-[\ln e+\ln x]=2-[1+\ln x]=1-\ln x\)
\(\Rightarrow y=\sqrt{1-\ln x}\)
ĐKXĐ:
\(\left\{\begin{matrix} \exists \ln x\\ 1-\ln x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ \ln x\leq 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ x\leq e\end{matrix}\right.\)
\(\Leftrightarrow 0< x\leq e\)
Vậy TXĐ là \((0;e]\)
giải pt
\(2^{2x}-\sqrt{2^x+6}=6\) , \(8^x+1=2\sqrt[3]{2^{x+1}-1}\)
help me
\(log_2\sqrt{2x^2-2x-3}+log^{x-1}_{\dfrac{1}{2}}=0\)
\(log^{x+4}_2+2log^{x+2}_4=2log^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
\(log^{4^x+1}_2=log^{2^{2x+3}-6}_2+x\)
help me
log \(^{x+4}_2\)+ 2log\(^{x+2}_4\)= 2log\(^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
Lời giải:
Ta có:
\(\log_2(x+4)+2\log_4(x+2)=2\log_{\frac{1}{2}}\frac{1}{8}=6\)
\(\Leftrightarrow 2\log_4(x+4)+2\log_4(x+2)=6\)
\(\Leftrightarrow \log_4(x+4)+\log_4(x+2)=3\)
\(\Leftrightarrow \log_4[(x+2)(x+4)]=3\)
\(\Leftrightarrow (x+2)(x+4)=4^3=64\)
\(\Leftrightarrow x^2+6x-56=0\)
\(\Leftrightarrow x=-3\pm \sqrt{65}\)
Kết hợp với ĐKXĐ ta suy ra \(x=-3+\sqrt{65}\) là nghiệm của pt
help me
1, tìm m đẻ bpt sau t/m x thuộc ( 2;3)
log\(^{x^2+4x+m}_5\) - log\(^{x^2+1}_5\)\(\le1\)
-2. giải bpt
log \(^{\left(x-\dfrac{1}{4}\right)}_x\ge2\)
bài 1 mk o bt lm ; nên mk lm câu 2 thôi nha .
bài 2) ta có : \(\log_x\left(x-\dfrac{1}{4}\right)\ge2\Leftrightarrow x-\dfrac{1}{4}\ge x^2\Leftrightarrow x^2-x+\dfrac{1}{4}\le0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\le0\)
mà ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow0\le\left(x-\dfrac{1}{2}\right)^2\le0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)
vậy \(x=\dfrac{1}{2}\)