4 [-2(8:4)+15(-3)-(-12)
3(25:5-14:2)-5(6:2)
[-15:(-3)]-3[2(5-9):3]
-16:(-4)[7-2(15:3)]
-7[8-3(14:7)-12:(-4)]-3(-2)
2[3-9:(-3)+2(5-7)]-18:(-9)
-16:(-8)+5[3-15:5+2] (-3+4)
4 [-2(8:4)+15(-3)-(-12)
3(25:5-14:2)-5(6:2)
[-15:(-3)]-3[2(5-9):3]
-16:(-4)[7-2(15:3)]
-7[8-3(14:7)-12:(-4)]-3(-2)
2[3-9:(-3)+2(5-7)]-18:(-9)
-16:(-8)+5[3-15:5+2] (-3+4)
4[-2(8:4)+15:(-3)-(-12)
3(25:5-14:2)-5(6:2)
[-15:(-3)]-3[2(5-9):3)]
-16:(-4)[7-2(15:3)]
-7[8-3(14:7)-12:(-4)]-3(-2)
2[3-9:(-3)+2(5-7)]-18:(-9)
-16:(-8)+5[3-15:5+2] (-3+4)
(-98).(1-246)-246.98
=-98.1+(-246).98
=(-98+98).(-246+1)
=0.-245
= -245
(-98 ) . (1-246) - 246.98
= (-98) . (-245) - 246 .98
= 24010 - 24108
= -98
( a + 1 ) . ( b -2)=7
Ta có:
\(\left(a+1\right)\left(b-2\right)=7\)
\(\Rightarrow\left(a+1\right)\left(b-2\right)=1.7=7.1=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)
Ta có bảng sau:
\(a+1\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(b-2\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(a\) | \(0\) | \(6\) | \(-2\) | \(-8\) |
\(b\) | \(9\) | \(3\) | \(-5\) | \(1\) |
Vậy các cặp số (a; b) thỏa mãn là...
Tìm x
a,(x-2).(y+3)=15
b,(3x+2).(1-y)=-7
c,xy-5x=14-(-1)
c',xy+x=5
d,5xy-5x+y=5
a) \(\left(x-2\right)\left(y+3\right)=15\)
\(\Rightarrow\left(x-2\right)\left(y+3\right)=1.15=15.1=\left(-1\right).\left(-15\right)=\left(-15\right).\left(-1\right)=3.5=5.3=\left(-3\right).\left(-5\right)=\left(-5\right).\left(-3\right)\)
Ta có bảng sau:
\(x-2\) | \(1\) | \(15\) | \(-1\) | \(-15\) | \(3\) | \(5\) | \(-3\) | \(-5\) |
\(y+3\) | \(15\) | \(1\) | \(-15\) | \(-1\) | \(5\) | \(3\) | \(-5\) | \(-3\) |
\(x\) | \(3\) | \(17\) | \(1\) | \(-13\) | \(5\) | \(7\) | \(-1\) | \(-3\) |
\(y\) | \(12\) | \(-2\) | \(-18\) | \(-4\) | \(2\) | \(0\) | \(-8\) | \(-6\) |
KL: Các cặp số (x; y)...
b) \(\left(3x+2\right)\left(1-y\right)=-7\)
\(\Rightarrow\left(3x+2\right)\left(1-y\right)=1.\left(-7\right)=\left(-7\right).1=\left(-1\right).7=7.\left(-1\right)\)
Ta có bảng sau:
\(3x+2\) | \(1\) | \(-7\) | \(-1\) | \(7\) |
\(1-y\) | \(-7\) | \(1\) | \(7\) | \(-1\) |
\(x\) | \(-\dfrac{1}{3}\) | \(-3\) | \(-1\) | \(\dfrac{5}{3}\) |
\(y\) | \(8\) | \(0\) | \(-6\) | \(2\) |
KL: Các cặp số (x; y)...
c) \(xy-5x=14-\left(-1\right)\)
\(\Leftrightarrow x\left(y-5\right)=15\)
\(\Rightarrow x\left(y-5\right)=1.15=15.1=\left(-1\right).\left(-15\right)=\left(-15\right).\left(-1\right)=3.5=5.3=\left(-3\right).\left(-5\right)=\left(-5\right).\left(-3\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(15\) | \(-1\) | \(-15\) | \(3\) | \(5\) | \(-3\) | \(-5\) |
\(y-5\) | \(15\) | \(1\) | \(-15\) | \(-1\) | \(5\) | \(3\) | \(-5\) | \(-3\) |
\(y\) | \(20\) | \(6\) | \(-10\) | \(4\) | \(10\) | \(8\) | \(0\) | \(2\) |
KL: Các cặp số (x; y)...
c') \(xy+x=5\)
\(\Leftrightarrow x\left(y+1\right)=5\)
\(\Rightarrow x\left(y+1\right)=1.5=5.1=\left(-1\right).\left(-5\right)=\left(-5\right).\left(-1\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+1\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(y\) | \(4\) | \(0\) | \(-6\) | \(-2\) |
KL: Các cặp số (x; y)...
d) Chưa tìm ra cách giải, chờ đã...
Tìm x ∈ Z biết:(x-2018)^2=4
\(\left(x-2018\right)^2=4\)
\(\Leftrightarrow\left(x-2018\right)^2=2^2=\left(-2\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2018=2\\x-2018=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2016\end{matrix}\right.\)
Vậy ...
(x-2018)2=4
Mà\(\left[{}\begin{matrix}4=2\\4=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2018\right)^2=2^2\\\left(x-2018\right)^2=\left(-2\right)^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=2\\x-2018=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2018+2\\x=2018+\left(-2\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=2016\end{matrix}\right.\)
Vậy \(x\in\left\{2020;2016\right\}\)
chỉ giúp mình bài tập tính nhanh -57.(16-43)+43.(-16-57)
-57.(16-43)+43.(-16-57)
=-57.(-27) +43.-73
= 1539+(-3139)
= (-1600)
Cho các số nguyên a,b,c, d thỏa mãn (-28) .a =b
35.c=d , biết rằng b và d là 2 số nguyên âm . So sánh a và c
\(\left\{{}\begin{matrix}-28a=b\\35c=d\end{matrix}\right.\)
Vì \(b;d\in Z^-\) nên \(\left\{{}\begin{matrix}-28a< 0\\35c< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\c< 0\end{matrix}\right.\)
Vậy \(a>c\)
Tìm x thuộc Z
a,( \(^{x^2}\) -5) . ( \(^{x^2}\) - 25 ) <0
b, ( x + 5 ) . ( 9 + \(^{x^2}\) ) <0
c, ( x + 3 ) . ( \(^{x^2}\) + 1 ) =0
d, ( x + 5 ) . ( \(^{x^2}\) - 4 ) = 0
a) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
Vì \(x^2-5>x^2-25\) nên \(\left\{{}\begin{matrix}x^2-5>0\\x^2-25< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2>5\\x^2< 25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{5}< x< -\sqrt{5}\left(vl\right)\\-5< x< 5\end{matrix}\right.\)
b) \(\left(x+5\right)\left(9+x^2\right)< 0\)
Vì \(9+x^2>0\) nên \(x+5< 0\Leftrightarrow x< -5\)
c) \(\left(x+3\right)\left(x^2+1\right)=0\)
Vì \(x^2+1>0\) nên \(x+3=0\Leftrightarrow x=-3\)
d) \(\left(x+5\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x+2\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-2\\x=2\end{matrix}\right.\)
1/ -7(5-x)-2(x-10)=15
2/ 4(x-5)-3(x+7)= -19
3/ 4(2-x)+3(x-5)=14
4/ 7(x-9)-5(6-x)=-6+11x
5/ -7(3x-5)+2(7x-14)=28
6/ 5(4-x)-7(-x+2)=4-9+3
7/ 4x-5(-3+x)=7
8/ 5(x-7)+10(3-x)=20
9/ 7(5-x)+5(x-2)=15
1/ Suy ra: -35 + 7x - 2x + 20 = 15
5x - 15 = 15
5x = 30
x = 6
2/ Suy ra: 4x - 20 - 3x - 21 = -19
x - 41 = -19
x = 22
3/ Suy ra: 8 - 4x + 3x - 15 = 14
-7 -x = 14
x = -7 -14
x = -21
4/ Suy ra: 7x - 63 - 30 + 5x = -6 + 11x
7x + 5x - 11x = -6 +63 + 30
x = 87
5/ Suy ra: -21x +35 + 14x - 28 = 28
-21x + 14x = 28 +28 - 35
-7x = 21
x= -3
6/ Suy ra: 20 - 5x + 7x - 14 = -2
2x = -8
x = -4
7/ Suy ra: 4x +15 -5x = 7
-x = -8
x = 8
8/ Suy ra: 5x - 35 +30 -10x = 20
-5x - 5 = 20
-5x = 25
x = -5
9/ Suy ra: 35 - 7x + 5x - 10 = 15
-7x + 5x = 15 +10 - 35
-2x = -10
x = 5