Bài tập cuối chương 5

Bài 5.31 (SGK Kết nối tri thức với cuộc sống - Trang 61)

Hướng dẫn giải

Một vectơ pháp tuyến của mặt phẳng (P) có tọa độ là \(\left( {1; - 2; - 3} \right)\).

Chọn D.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 5.32 (SGK Kết nối tri thức với cuộc sống - Trang 61)

Hướng dẫn giải

Phương trình mặt phẳng (P) đi qua điểm \(I\left( {1; - 1;2} \right)\) và nhận vectơ \(\overrightarrow n  = \left( {2;1; - 1} \right)\) làm một vectơ pháp tuyến là: \(2\left( {x - 1} \right) + 1\left( {y + 1} \right) - \left( {z - 2} \right) = 0\) \( \Leftrightarrow 2x + y - z + 1 = 0\)

Chọn D

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 5.33 (SGK Kết nối tri thức với cuộc sống - Trang 61)

Hướng dẫn giải

Một vectơ chỉ phương của đường thẳng d có tọa độ là \(\left( {2;1; - 2} \right)\).

Chọn B

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 5.34 (SGK Kết nối tri thức với cuộc sống - Trang 61)

Hướng dẫn giải

Một vectơ chỉ phương của đường thẳng d có tọa độ là \(\left( {2;1; - 1} \right)\).

Chọn C

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 5.35 (SGK Kết nối tri thức với cuộc sống - Trang 61)

Hướng dẫn giải

Phương trình đường thẳng d đi qua \(I\left( {2; - 1;1} \right)\) và nhận vectơ \(\overrightarrow u  = \left( {1;2; - 3} \right)\) làm một vectơ chỉ phương là: \(\frac{{x - 2}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 3}}\).

Chọn C

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 5.36 (SGK Kết nối tri thức với cuộc sống - Trang 61)

Hướng dẫn giải

Đường thẳng AB đi qua điểm \(A\left( { - 1;0; - 1} \right)\) và nhận \(\overrightarrow {AB} \left( {3;1;2} \right)\) làm một vectơ chỉ phương. Do đó, phương trình tham số của đường thẳng AB là: \(\left\{ \begin{array}{l}x =  - 1 + 3t\\y = t\\z =  - 1 + 2t\end{array} \right.\)

Chọn D

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 5.37 (SGK Kết nối tri thức với cuộc sống - Trang 61)

Hướng dẫn giải

Mặt phẳng (P) có một vectơ pháp tuyến là: \(\overrightarrow {{n_P}} \left( {1; - 2;1} \right)\).

Vì đường thẳng d vuông góc với mặt phẳng (P) nên d nhận \(\overrightarrow {{n_P}} \left( {1; - 2;1} \right)\) là một vectơ chỉ phương. Mà đường thẳng d đi qua \(I\left( {2;1; - 3} \right)\) nên phương trình d là: \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 3}}{1}\)

Chọn A

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 5.38 (SGK Kết nối tri thức với cuộc sống - Trang 62)

Hướng dẫn giải

Ta viết lại phương trình mặt cầu (S) được: \({\left[ {x - \left( { - 1} \right)} \right]^2} + {\left( {y - 0} \right)^2} + {\left( {z - 3} \right)^2} = {2^2}\)

Mặt cầu (S) có tâm \(I\left( { - 1;0;3} \right),\) bán kính \(R = 2\).

Chọn C

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 5.39 (SGK Kết nối tri thức với cuộc sống - Trang 62)

Hướng dẫn giải

Phương trình mặt cầu (S) có \(a = 1;b =  - 2,c =  - 1,d =  - 3\)

Do đó, mặt cầu (S) có bán kính \(R = \sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2} + 3}  = 3\) và tâm \(I\left( {1; - 2; - 1} \right)\)

Chọn A

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 5.40 (SGK Kết nối tri thức với cuộc sống - Trang 62)

Hướng dẫn giải

Ta có: \(\overrightarrow {AB}  = \left( { - 1;1;3} \right),\overrightarrow {AC} \left( { - 2; - 2;4} \right) \Rightarrow \frac{{ - 1}}{2}\overrightarrow {AC}  = \left( {1;1; - 2} \right)\)

a) Ta có: \(\left[ {\overrightarrow {AB} ,\frac{{ - 1}}{2}\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&3\\1&{ - 2}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}3&{ - 1}\\{ - 2}&1\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 1}&1\\1&1\end{array}} \right|} \right) = \left( { - 5;1; - 2} \right)\)

Mặt phẳng (ABC) đi qua điểm \(A\left( {1;0; - 1} \right)\) và nhận \(\left[ {\overrightarrow {AB} ,\frac{{ - 1}}{2}\overrightarrow {AC} } \right] = \left( { - 5;1; - 2} \right)\) làm một vectơ pháp tuyến nên phương trình mặt phẳng (ABC) là:

\( - 5\left( {x - 1} \right) + y - 2\left( {z + 1} \right) = 0 \Leftrightarrow  - 5x + y - 2z + 3 = 0\)

b) Đường thẳng AC đi qua điểm \(A\left( {1;0; - 1} \right)\) và nhận \(\frac{{ - 1}}{2}\overrightarrow {AC}  = \left( {1;1; - 2} \right)\) làm một vectơ chỉ phương nên phương trình chính tắc đường thẳng AC là \(\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 2}}\) phương trình tham số đường thẳng AC là \(\left\{ \begin{array}{l}x = 1 + t\\y = t\\z =  - 1 - 2t\end{array} \right.\).

c) Gọi I là trung điểm của AC nên \(I\left( {0; - 1;1} \right)\)

Mặt cầu đường kính AC có bán kính \(R = \frac{{AC}}{2} = \frac{1}{2}\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2} + {4^2}}  = \sqrt 6 \) và tâm \(I\left( {0; - 1;1} \right)\) nên phương trình mặt cầu là: \({x^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 6\)

d) Mặt cầu tâm A đi qua B có tâm là \(A\left( {1;0; - 1} \right)\) và bán kính \(AB = \sqrt {{{\left( { - 1} \right)}^2} + {1^2} + {3^2}}  = \sqrt {11} \) nên phương trình mặt cầu là: \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 11\)

(Trả lời bởi datcoder)
Thảo luận (1)