Bài 14. Phương trình mặt phẳng

Mở đầu (SGK Kết nối tri thức với cuộc sống - Trang 29)

Hoạt động 1 (SGK Kết nối tri thức với cuộc sống - Trang 29)

Hướng dẫn giải

Nếu mặt bàn thuộc mặt phẳng nằm ngang thì \(\overrightarrow n \) có phương thẳng đứng, vuông góc với mặt bàn.

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống - Trang 30)

Hướng dẫn giải

Vì \(\left( \alpha  \right)\) là mặt phẳng trung trực của đoạn thẳng AB nên giá của \(\overrightarrow {AB}  \bot \left( \alpha  \right)\).

Do đó, một vectơ pháp tuyến của \(\left( \alpha  \right)\) là \(\overrightarrow {AB} \left( { - 4;2; - 2} \right)\).

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 2 (SGK Kết nối tri thức với cuộc sống - Trang 30)

Hướng dẫn giải

a) Ta có: \(\overrightarrow n .\overrightarrow u  = a\left( {bc' - b'c} \right) + b\left( {ca' - c'a} \right) + c\left( {ab' - a'b} \right)\)

\( = abc' - ab'c + cba' - abc' + ab'c - a'bc = \left( {abc' - abc'} \right) - \left( {ab'c - ab'c} \right) + \left( {cba' - cba'} \right) = 0\)

Do đó, vectơ \(\overrightarrow n \) vuông góc với vectơ \(\overrightarrow u \).

Ta có: \(\overrightarrow n .\overrightarrow v  = a'\left( {bc' - b'c} \right) + b'\left( {ca' - c'a} \right) + c'\left( {ab' - a'b} \right)\)

\( = a'bc' - a'b'c + cb'a' - ab'c' + ab'c' - a'bc'\)

\( = \left( {a'bc' - a'bc'} \right) - \left( {a'b'c - a'b'c} \right) + \left( {ab'c' - ab'c'} \right) = 0\)

Do đó, vectơ \(\overrightarrow n \) vuông góc với vectơ \(\overrightarrow v \).

Suy ra, vectơ \(\overrightarrow n \) vuông góc với cả hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \).

b) Nếu \(\overrightarrow n  = \overrightarrow 0 \) thì \(\left\{ \begin{array}{l}bc' - b'c = 0\\ca' - c'a = 0\\ab' - a'b = 0\end{array} \right.\left( I \right)\)

+ Với \(a = 0,b = 0,c = 0\) thì (I) luôn đúng. Khi đó, \(\overrightarrow u \) và \(\overrightarrow v \) cùng phương.

+ Với \(a \ne 0,b \ne 0,c \ne 0\), từ (I) ta có: \(\left\{ \begin{array}{l}\frac{{b'}}{b} = \frac{{c'}}{c}\\\frac{{a'}}{a} = \frac{{c'}}{c}\\\frac{{b'}}{b} = \frac{{a'}}{a}\end{array} \right.\), do đó, \(a' = ka,b' = kb,c' = kc\;\;\left( {k \in \mathbb{R}} \right)\)

Suy ra: \(\overrightarrow v  = k\overrightarrow u \). Khi đó, \(\overrightarrow u \) và \(\overrightarrow v \) cùng phương.

Vậy \(\overrightarrow n  = \overrightarrow 0 \) khi và chỉ khi \(\overrightarrow u \) và \(\overrightarrow v \) cùng phương. 

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 2 (SGK Kết nối tri thức với cuộc sống - Trang 31)

Hướng dẫn giải

Ta có: \(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left| \begin{array}{l}3\;\;1\\6\;\;2\end{array} \right|;\left| \begin{array}{l}1\;\;2\\2\;\;4\end{array} \right|;\left| \begin{array}{l}2\;\;3\\4\;\;6\end{array} \right|} \right) = \left( {0;0;0} \right)\)

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 3 (SGK Kết nối tri thức với cuộc sống - Trang 31)

Hướng dẫn giải

a) Vectơ \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) có khác vectơ-không và giá của \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\)vuông góc với cả hai giá của \(\overrightarrow u \), \(\overrightarrow v \) nếu hai vectơ \(\overrightarrow u \), \(\overrightarrow v \) không cùng phương.

b) Vì hai vectơ \(\overrightarrow u \), \(\overrightarrow v \) không cùng phương và có giá nằm trong hoặc song song với mặt phẳng (P), mà vectơ \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) có giá vuông góc với cả hai giá của \(\overrightarrow u \), \(\overrightarrow v \) nên giá của vectơ \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) vuông góc với mặt phẳng (P). Suy ra, mặt phẳng (P) nhận \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) làm một vectơ pháp tuyến.

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 3 (SGK Kết nối tri thức với cuộc sống - Trang 31)

Hướng dẫn giải

Ta có: \(\overrightarrow {AB} \left( { - 3;3; - 1} \right),\overrightarrow {AC}  = \left( { - 3;5;1} \right)\). Vì \(\overrightarrow {AB} ,\overrightarrow {AC} \) là các vectơ chỉ phương của mặt phẳng (ABC) nên mặt phẳng (ABC) nhận \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\) làm một vectơ pháp tuyến.

\(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| \begin{array}{l}3\;\;\; - 1\\\;5\;\;\;\;\;1\end{array} \right|;\left| \begin{array}{l} - 1\;\; - 3\\\;\;1\;\; - 3\end{array} \right|;\left| \begin{array}{l} - 3\;\;3\\ - 3\;\;5\end{array} \right|} \right) = \left( {8;6; - 6} \right)\)

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 1 (SGK Kết nối tri thức với cuộc sống - Trang 31)

Hướng dẫn giải

a) Ta có: \(\left[ {\overrightarrow {OP} ,\overrightarrow F } \right] = \left( {\left| {\begin{array}{*{20}{c}}y&z\\b&c\end{array}} \right|;\left| {\begin{array}{*{20}{c}}z&x\\c&a\end{array}} \right|;\left| {\begin{array}{*{20}{c}}x&y\\a&b\end{array}} \right|} \right) = \left( {cy - bz;za - cx;xb - ay} \right)\)

Do đó, \(\overrightarrow M  = \left( {cy - bz;za - cx;xb - ay} \right)\).

b) Ta có: \(\overrightarrow {OP'}  = \left( {2x;2y;2z} \right)\). Khi đó, moment lực là: \(\overrightarrow {M'}  = \left[ {\overrightarrow {OP'} ,\overrightarrow F } \right]\)

Do đó, \(\left[ {\overrightarrow {OP'} ,\overrightarrow F } \right] = \left( {\left| {\begin{array}{*{20}{c}}{2y}&{2z}\\b&c\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{2z}&{2x}\\c&a\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{2x}&{2y}\\a&b\end{array}} \right|} \right) = \left( {2cy - 2bz;2za - 2cx;2xb - 2ay} \right)\)

Suy ra: \(\overrightarrow {M'}  = \left( {2cy - 2bz;2za - 2cx;2xb - 2ay} \right) = 2\overrightarrow M \)

Vậy khi giữ nguyên lực tác động \(\overrightarrow F \) trong khi thay vị trí đặt lực từ P sang P’ sao cho \(\overrightarrow {OP'}  = 2\overrightarrow {OP} \) thì moment lực sẽ tăng lên gấp đôi.

Từ đó, ta rút ra kết luận là nếu tác động vào cán mỏ lết tại vị trí P cách con ốc ở vị trí O càng lớn thì càng đỡ tốn sức khi dùng mỏ lết vặn ốc.

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 4 (SGK Kết nối tri thức với cuộc sống - Trang 31)

Hướng dẫn giải

a) Một điểm M(x; y; z) thuộc \(\left( \alpha  \right)\) khi và chỉ hai vectơ \(\overrightarrow n \) và \(\overrightarrow {{M_o}M} \) vuông góc với nhau.

b) Ta có: \(\overrightarrow {{M_o}M}  = \left( {x - {x_0};y - {y_0};z - {z_0}} \right)\). Vì M(x; y; z) thuộc \(\left( \alpha  \right)\) thì \(\overrightarrow n  \bot \overrightarrow {{M_o}M} \).

Suy ra: \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\)

Vậy điểm M(x; y; z) thuộc \(\left( \alpha  \right)\) khi và chỉ khi tọa độ của nó thỏa mãn hệ thức \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 4 (SGK Kết nối tri thức với cuộc sống - Trang 31)

Hướng dẫn giải

a) Đây không phải là phương trình tổng quát của một mặt phẳng vì phương trình không có dạng \(Ax + By + Cz + D = 0\).

b) Đây là phương trình tổng quát của một mặt phẳng.

c) Đây không phải là phương trình tổng quát của một mặt phẳng vì phương trình không có dạng \(Ax + By + Cz + D = 0\).

(Trả lời bởi datcoder)
Thảo luận (1)