Bài 14. Phương trình mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian Oxyz, cho ba điểm không thẳng hàng A(1; −2; 1), B(−2; 1; 0), C(−2; 3; 2). Hãy chỉ ra một vectơ pháp tuyến của mặt phẳng (ABC).

datcoder
27 tháng 10 lúc 21:33

Ta có: \(\overrightarrow {AB} \left( { - 3;3; - 1} \right),\overrightarrow {AC}  = \left( { - 3;5;1} \right)\). Vì \(\overrightarrow {AB} ,\overrightarrow {AC} \) là các vectơ chỉ phương của mặt phẳng (ABC) nên mặt phẳng (ABC) nhận \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\) làm một vectơ pháp tuyến.

\(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| \begin{array}{l}3\;\;\; - 1\\\;5\;\;\;\;\;1\end{array} \right|;\left| \begin{array}{l} - 1\;\; - 3\\\;\;1\;\; - 3\end{array} \right|;\left| \begin{array}{l} - 3\;\;3\\ - 3\;\;5\end{array} \right|} \right) = \left( {8;6; - 6} \right)\)