Trong không gian Oxyz, cho hai vectơ \(\overrightarrow{u}\) = (a; b; c) và \(\overrightarrow{v}\) = (a′; b′; c′).
a) Vectơ \(\overrightarrow{n}\) = (bc′ − b′c; ca′ − c′a; ab′ − a′b) có vuông góc với cả hai vectơ \(\overrightarrow{u}\) và \(\overrightarrow{v}\) hay không?
b) \(\overrightarrow{n}=\overrightarrow{0}\) khi và chỉ khi \(\overrightarrow{u}\) và \(\overrightarrow{v}\) có mối quan hệ gì?
a) Ta có: \(\overrightarrow n .\overrightarrow u = a\left( {bc' - b'c} \right) + b\left( {ca' - c'a} \right) + c\left( {ab' - a'b} \right)\)
\( = abc' - ab'c + cba' - abc' + ab'c - a'bc = \left( {abc' - abc'} \right) - \left( {ab'c - ab'c} \right) + \left( {cba' - cba'} \right) = 0\)
Do đó, vectơ \(\overrightarrow n \) vuông góc với vectơ \(\overrightarrow u \).
Ta có: \(\overrightarrow n .\overrightarrow v = a'\left( {bc' - b'c} \right) + b'\left( {ca' - c'a} \right) + c'\left( {ab' - a'b} \right)\)
\( = a'bc' - a'b'c + cb'a' - ab'c' + ab'c' - a'bc'\)
\( = \left( {a'bc' - a'bc'} \right) - \left( {a'b'c - a'b'c} \right) + \left( {ab'c' - ab'c'} \right) = 0\)
Do đó, vectơ \(\overrightarrow n \) vuông góc với vectơ \(\overrightarrow v \).
Suy ra, vectơ \(\overrightarrow n \) vuông góc với cả hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \).
b) Nếu \(\overrightarrow n = \overrightarrow 0 \) thì \(\left\{ \begin{array}{l}bc' - b'c = 0\\ca' - c'a = 0\\ab' - a'b = 0\end{array} \right.\left( I \right)\)
+ Với \(a = 0,b = 0,c = 0\) thì (I) luôn đúng. Khi đó, \(\overrightarrow u \) và \(\overrightarrow v \) cùng phương.
+ Với \(a \ne 0,b \ne 0,c \ne 0\), từ (I) ta có: \(\left\{ \begin{array}{l}\frac{{b'}}{b} = \frac{{c'}}{c}\\\frac{{a'}}{a} = \frac{{c'}}{c}\\\frac{{b'}}{b} = \frac{{a'}}{a}\end{array} \right.\), do đó, \(a' = ka,b' = kb,c' = kc\;\;\left( {k \in \mathbb{R}} \right)\)
Suy ra: \(\overrightarrow v = k\overrightarrow u \). Khi đó, \(\overrightarrow u \) và \(\overrightarrow v \) cùng phương.
Vậy \(\overrightarrow n = \overrightarrow 0 \) khi và chỉ khi \(\overrightarrow u \) và \(\overrightarrow v \) cùng phương.