Bài 6. Vectơ trong không gian

Bài 2.8 (SGK Kết nối tri thức với cuộc sống trang 58)

Hướng dẫn giải

Đặt tên khối rubik là tứ diện đều ABCD có G là trọng tâm tam giác BCD, I là trọng tâm tứ diện ABCD. Do đó, \(\overrightarrow {AI}  = 3\overrightarrow {IG}  \Rightarrow IG = \frac{1}{4}AG\)

Vì chiều cao của rubik bằng 8cm nên \(AG = 8cm \Rightarrow IG = \frac{1}{4}.8 = 2\left( {cm} \right)\)

Vậy khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó bằng 2cm.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Câu hỏi (SGK Kết nối tri thức với cuộc sống trang 53)

Hướng dẫn giải

Hai vectơ \(1\overrightarrow a \) và \(\overrightarrow a \) bằng nhau vì chúng có cùng độ dài và cùng hướng.

Hai vectơ \(\left( { - 1} \right)\overrightarrow a \) và \( - \overrightarrow a \) bằng nhau chúng có cùng độ dài và cùng hướng.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.10 (SGK Kết nối tri thức với cuộc sống trang 59)

Hướng dẫn giải

a) Vì AA’//CC’ nên hai vectơ \(\overrightarrow {AA'} \) và \(\overrightarrow {C'C} \) ngược hướng nhau.

Suy ra, \(\left( {\overrightarrow {AA'} ,\overrightarrow {C'C} } \right) = {180^0}\).

Do đó, \(\overrightarrow {AA'} .\overrightarrow {C'C}  = \left| {\overrightarrow {AA'} } \right|.\left| {\overrightarrow {C'C} } \right|.\cos \left( {\overrightarrow {AA'} ,\overrightarrow {C'C} } \right) = 2.2.\cos {180^0} =  - 4\)

b) Vì A’ADD’ là hình chữ nhật nên \(\widehat {A'AD} = {90^0}\)

Vì ABCD là hình vuông nên \(\overrightarrow {BC}  = \overrightarrow {AD} \). Do đó, \(\left( {\overrightarrow {AA'} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AA'} ,\overrightarrow {AD} } \right) = \widehat {A'AD} = {90^0}\)

Ta có: \(\overrightarrow {AA'} .\overrightarrow {BC}  = \overrightarrow {AA'} .\overrightarrow {AD}  = \left| {\overrightarrow {AA'} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AA'} ,\overrightarrow {AD} } \right) = 2.1.\cos {90^0} = 0\)

c) Vì A’ABB’ là hình chữ nhật nên \(\overrightarrow {B'A'}  = \overrightarrow {BA} \).

Vì ABCD là hình vuông nên \(\widehat {CAB} = {45^0}\) và \(AC = \sqrt 2 \)

Ta có: \(\overrightarrow {AC} .\overrightarrow {B'A'}  =  - \overrightarrow {AC} .\overrightarrow {AB}  =  - \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AB} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right) =  - \sqrt 2 .1.\cos {45^0} =  - 1\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Kết nối tri thức với cuộc sống trang 47)

Hướng dẫn giải

a) Vì ABCD.A’B’C’D’ là hình hộp nên ABCD và DCC’D’ là các hình bình hành. Suy ra, \(AB = CD = D'C'\). Do đó, \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {D'C'} } \right|\).

b) Vì ABCD và DCC’D’ là các hình bình hành nên AB//CD, CD//C’D’. Do đó, AB//C’D’. Vậy giá của hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {D'C'} \) song song với nhau.

c) Hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {D'C'} \) cùng phương và cùng hướng.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 8 (SGK Kết nối tri thức với cuộc sống trang 54)

Hướng dẫn giải

Theo ví dụ 8 ta có: \(\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD}  = 3\overrightarrow {AG} \)\( \Rightarrow \overrightarrow {AI}  + \overrightarrow {IB}  + \overrightarrow {AI}  + \overrightarrow {IC}  + \overrightarrow {AI}  + \overrightarrow {ID}  = 3\overrightarrow {AG} \)

\( \Rightarrow \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = 3\overrightarrow {AG}  - 3\overrightarrow {AI}  = 3\left( {\overrightarrow {AG}  + \overrightarrow {IA} } \right) = 3\overrightarrow {IG}  = \overrightarrow {AI} \)\( \Rightarrow \overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = \overrightarrow 0 \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 1 (SGK Kết nối tri thức với cuộc sống trang 46)

Hướng dẫn giải

a) Các đoạn thẳng này có hướng lên trên (về phía móc cần cẩu) và độ dài của các đoạn thẳng thể hiện cho độ lớn của các lực căng dây và được lấy tỉ lệ với độ lớn của các lực căng dây.

b) Các đoạn thẳng này không cùng nằm trên một mặt phẳng.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống trang 47)

Hướng dẫn giải

a) Trong các vectơ \(\overrightarrow {AC} ,\overrightarrow {AD} ,\overrightarrow {AD'} \), hai vectơ \(\overrightarrow {AC} ,\overrightarrow {AD} \) có giá nằm trong mặt phẳng (ABCD)

b) Vì ABCD.A’B’C’D’ là hình lập phương nên \(AD = DC = DD'\)

Tam giác ADD’ vuông tại D nên theo định lý Pythagore ta có:

\(AD' = \sqrt {A{D^2} + DD{'^2}}  = AD\sqrt 2 \)

Tam giác ADC vuông tại D nên theo định lý Pythagore ta có:

\(AC = \sqrt {A{D^2} + D{C^2}}  = AD\sqrt 2 \)

 Do đó, \(AD' = AC\) hay \(\left| {\overrightarrow {AC} } \right| = \left| {\overrightarrow {AD'} } \right|\). Vậy hai vectơ \(\overrightarrow {AC} ,\overrightarrow {AD'} \) có cùng độ dài.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 1 (SGK Kết nối tri thức với cuộc sống trang 48)

Hướng dẫn giải

Gọi vectơ biểu diễn độ dịch chuyển của thang máy từ tầng 15 lên tầng 22 của tòa nhà là \(\overrightarrow a \). Gọi vectơ biểu diễn độ dịch chuyển của thang máy từ tầng 22 lên tầng 29 của tòa nhà là \(\overrightarrow b \).

Vì hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đều dịch chuyển từ tầng thấp lên tầng cao nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) có cùng hướng (1).

Độ dài vectơ \(\overrightarrow a \) là: \(\left| {\overrightarrow a } \right| = 7\), độ dài vectơ \(\overrightarrow b \) là: \(\left| {\overrightarrow b } \right| = 7\) nên \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = 7\) (2)

Từ (1) và (2) ta có: \(\overrightarrow a  = \overrightarrow b \). Vậy các vectơ biểu diễn độ dịch chuyển của thang máy trong hai lần di chuyển đó có bằng nhau.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 6 (SGK Kết nối tri thức với cuộc sống trang 52)

Hướng dẫn giải

a) Tứ giác ABCD là hình bình hành nên \(AB = CD\), AB//CD. Suy ra \(BM = DN\) (vì M, N lần lượt là trung điểm của AB và CD) và BM//DN. Do đó, tứ giác DMBN là hình bình hành, do đó, \(BN = DM\) và BN//DM. Hai vectơ \(\overrightarrow {BN} \) và \(\overrightarrow {DM} \) có cùng độ dài và ngược hướng nên \(\overrightarrow {BN} \) và \(\overrightarrow {DM} \) là hai vectơ đối nhau.

b) Theo a ta có: \(\overrightarrow {BN}  =  - \overrightarrow {DM} \)

Do đó, \(\overrightarrow {SD}  - \overrightarrow {BN}  - \overrightarrow {CM}  = \overrightarrow {SD}  + \overrightarrow {DM}  + \overrightarrow {MC}  = \overrightarrow {SM}  + \overrightarrow {MC}  = \overrightarrow {SC} \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.3 (SGK Kết nối tri thức với cuộc sống trang 58)

Hướng dẫn giải

a) Các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c ,\overrightarrow d \) và \(\overrightarrow e \) có cùng phương; các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c ,\overrightarrow d \) cùng hướng với nhau và ngược hướng với vectơ \(\overrightarrow e \).

b) Vì trọng lực tác dụng lên bàn phân tán đều qua bốn chân bàn và gây nên các phản lực từ mặt sàn lên các chân bàn nên các vectơ \(\overrightarrow b ,\overrightarrow c ,\overrightarrow d ,\overrightarrow e \) có độ lớn bằng nhau. Mà các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c ,\overrightarrow d \) cùng hướng với nhau. Do đó, các vectơ \(\overrightarrow b ,\overrightarrow c ,\overrightarrow d ,\overrightarrow e \) đôi một bằng nhau.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)