Trong Luyện tập 8, ta đã biết trọng tâm của tứ diện ABCD là một điểm I thỏa mãn \(\overrightarrow {AI} = 3\overrightarrow {IG} \), ở đó G là trọng tâm của tam giác BCD. Áp dụng tính chất trên để tính khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó, biết rằng chiều cao của khối rubik là 8cm (H.2.30).

Đặt tên khối rubik là tứ diện đều ABCD có G là trọng tâm tam giác BCD, I là trọng tâm tứ diện ABCD. Do đó, \(\overrightarrow {AI} = 3\overrightarrow {IG} \Rightarrow IG = \frac{1}{4}AG\)
Vì chiều cao của rubik bằng 8cm nên \(AG = 8cm \Rightarrow IG = \frac{1}{4}.8 = 2\left( {cm} \right)\)
Vậy khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó bằng 2cm.