Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{2x+7};\) b. \(\sqrt{-3x+4};\) c. \(\sqrt{\dfrac{1}{-1+x}};\) d. \(\sqrt{1+x^2}.\)
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{2x+7};\) b. \(\sqrt{-3x+4};\) c. \(\sqrt{\dfrac{1}{-1+x}};\) d. \(\sqrt{1+x^2}.\)
Phân tích thành nhân tử:
a. x2 - 3; b. x2 - 6;
c. \(x^2+2\sqrt{3}x+3;\) d. \(x^2-2\sqrt{5}x+5.\)
Thảo luận (2)Hướng dẫn giảia) x2-3=(x-\(\sqrt{3}\))(x+\(\sqrt{3}\))
b) x2-6=(x-\(\sqrt{6}\))(x+\(\sqrt{6}\))
c) x2+2\(\sqrt{3}\)x +3 = x2 + 2.x.\(\sqrt{3}\) + (\(\sqrt{3}\))2= (x+\(\sqrt{3}\))2=(x+\(\sqrt{3}\))(x+\(\sqrt{3}\)).
d) x2-2\(\sqrt{5}\) x+ 5 = x2 - 2.x.\(\sqrt{5}\) + (\(\sqrt{5}\))2 = (x-\(\sqrt{5}\))2= (x-\(\sqrt{5}\))(x-\(\sqrt{5}\)).
(Trả lời bởi Nguyễn Tấn Dũng)
Biểu thức sau đây xác định với giá trị nào của \(x\) ?
a) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)
b) \(\sqrt{x^2-4}\)
c) \(\sqrt{\dfrac{x-2}{x+3}}\)
d) \(\sqrt{\dfrac{2+x}{5-x}}\)
Thảo luận (1)Hướng dẫn giảia, Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) xác định thì (x-1)(x-3)\(\ge\)0
TH1: \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge3\end{matrix}\right.\Leftrightarrow}x\ge3}\)TH2:\(\left\{{}\begin{matrix}x-1\le0\\x-3\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\le3\end{matrix}\right.\Leftrightarrow}x\le1}\) Vậy nếu \(x\ge3\) hoặc \(x\le1\) thì biểu thức có nghĩa
b, Để \(\sqrt{x^2-4}=\sqrt{\left(x-2\right)\left(x+2\right)}\)có nghĩa thì (x-2)(x+2)\(\ge0\)
TH1: \(\left\{{}\begin{matrix}x-2\ge0\\x+2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ge-2\end{matrix}\right.\Leftrightarrow x\ge}2}\)TH2:\(\left\{{}\begin{matrix}x-2\le0\\x+2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\le-2\end{matrix}\right.\Leftrightarrow}x\le-2}\)Vậy nếu \(x\ge2\) hoặc \(x\le-2\) thì biểu thức có nghĩa
(Trả lời bởi phạm hương trà)
Chứng minh:
a. \(\left(\sqrt{3}-1\right)^2=4-2\sqrt{3};\)
b. \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=-1.\)
Thảo luận (1)Hướng dẫn giảia) Ta có :
4 - 2\(\sqrt{3}\) = 1 - 2.1.\(\sqrt{3}\) + 3 = 1 - 2.1.\(\sqrt{3}\) + (\(\sqrt{3}\))2 = (1 - \(\sqrt{3}\))2= (\(\sqrt{3}\) - 1)2
b) Áp dụng câu a ta có:
\(\sqrt{4-2\sqrt{3}}\) - \(\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}\) - \(\sqrt{3}\) = (\(\sqrt{3}\) - 1) -\(\sqrt{3}\)
= \(\sqrt{3}\) - 1 - \(\sqrt{3}\) = -1
(Trả lời bởi Nguyễn Tấn Dũng)
So sánh (không dùng bảng số hay máy tính bỏ túi)
a) \(6+2\sqrt{2}\) và 9
b) \(\sqrt{2}+\sqrt{3}\) và 3
c) \(9+4\sqrt{5}\) và 16
d) \(\sqrt{11}-\sqrt{3}\) và 2
Thảo luận (1)Hướng dẫn giảia. Ta có : \(\sqrt{8}< \sqrt{9}\) ( vì 8< 9)
hay \(2\sqrt{2}< 3\)
\(\Rightarrow\) \(2\sqrt{2}+6< 3+6\)
hay \(2\sqrt{2}+6< 9\)
b. Ta có : \(\sqrt{6}>\sqrt{4}\) (vì 6 > 4 )
hay \(\sqrt{2.3}>2\)
\(\Rightarrow\) 2\(\sqrt{2.3}\) > 4
\(\Rightarrow\) 2 + \(2\sqrt{2.3}\) + 3 > 9
hay \(\left(\sqrt{2}+\sqrt{3}\right)^2\)> 9
\(\Rightarrow\) \(\sqrt{2}+\sqrt{3}>3\)
c. Ta có: \(\sqrt{80}>\sqrt{49}\) (vì 80>49)
hay \(4\sqrt{5}\) > 7
\(\Rightarrow\) 9 + \(4\sqrt{5}\) > 16
d. Ta có : \(2\sqrt{33}>2\sqrt{25}\) (vì 33> 25 ) hay \(2\sqrt{23}>2.5\)
\(\Rightarrow\) - \(2\sqrt{33}\) < - 2.5
\(\Rightarrow\) 11 - \(2\sqrt{11.3}\) +3 < 11- 2.5 +3
hay \(\left(\sqrt{11}-\sqrt{3}\right)^2\) < 4
\(\Rightarrow\) \(\sqrt{11}-\sqrt{3}< 2\)
(Trả lời bởi katherina)
Rút gọn các biểu thức sau :
a) \(\sqrt{\left(4+\sqrt{2}\right)^2}\)
b) \(\sqrt{\left(3-\sqrt{3}\right)^2}\)
c) \(\sqrt{\left(4-\sqrt{17}\right)^2}\)
d) \(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
Thảo luận (1)Hướng dẫn giảia)\(\sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)
b)\(\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)
c)\(\sqrt{\left(4-\sqrt{17}\right)^2}=\left|4-\sqrt{17}\right|=\sqrt{17}-4\)
d)\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+\left|2-\sqrt{3}\right|=2\sqrt{3}+2-\sqrt{3}\)
(Trả lời bởi Trần Thị Tâm Phúc )
Đẳng thức nào đúng nếu \(x\) là số âm :
(A) \(\sqrt{9x^2}=9x\)
(B) \(\sqrt{9x^2}=3x\)\
(C) \(\sqrt{9x^2}=-9\)
(D) \(\sqrt{9x^2}=-3x\)
Hãy chọn đáp án đúng ?
Thảo luận (3)Hướng dẫn giảiCông thức D đúng
(Trả lời bởi Magic Kid)
Rút gọn các biểu thức :
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
c) \(\sqrt{9x^2-2x}\) với \(x< 0\)
d) \(x-4+\sqrt{16-8x+x^2}\) với \(x>4\)
Thảo luận (3)Hướng dẫn giảia, Ta có : \(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}\right)^2-2\sqrt{3}\times1+1^2=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}\)
Ta có : \(\sqrt{3}>\sqrt{1}\)(vì 3>1)
\(\Leftrightarrow\sqrt{3}>1\Leftrightarrow\sqrt{3}-1>0\Rightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
(Trả lời bởi phạm hương trà)
Tìm \(x\), biết :
a) \(\sqrt{9x^2}=2x+1\)
b) \(\sqrt{x^2+6x+9}=3x-1\)
c) \(\sqrt{1-4x+4x^2}=5\)
d) \(\sqrt{x^4}=7\)
Thảo luận (1)Hướng dẫn giảia) \(\sqrt{9x^2}=2x+1\) (1)
\(\Leftrightarrow3\cdot\left|x\right|=2x+1\)
\(\Leftrightarrow3\cdot\left|x\right|-2x=1\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2x=1\left(đk:x\ge0\right)\\3\cdot\left(-x\right)-2x=1\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(đk:x\ge0\right)\\x=-\dfrac{1}{5}\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{5}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{1}{5};1\right\}\)
b) \(\sqrt{x^2+6x+9}=3x-1\) (2)
\(\Leftrightarrow x^2+6x+9=\left(3x-1\right)^2\)
\(\Leftrightarrow x^2+6x+9=9x^2-6x+1\)
\(\Leftrightarrow x^2+6x+9-9x^2+6x-1=0\)
\(\Leftrightarrow-8x^2+12x+8=0\)
\(\Leftrightarrow2x^2-3x-4=0\)
\(\Leftrightarrow x=\dfrac{-\left(-3\right)\pm\sqrt{\left(-3\right)^2-4\cdot2\cdot\left(-2\right)}}{2\cdot2}\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{9+16}}{4}\)
\(\Leftrightarrow x=\dfrac{3\pm5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+5}{4}\\x=\dfrac{3-5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{1}{2}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{2\right\}\)
c) \(\sqrt{1-4x+4x^2}=5\) (3)
\(\Leftrightarrow1-4x+4x^2=25\)
\(\Leftrightarrow\left(1-2x\right)^2=25\)
\(\Leftrightarrow1-2x=\pm5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-2;3\right\}\)
d) \(\sqrt{x^4}=7\) (4)
\(\Leftrightarrow x^2=7\)
\(\Leftrightarrow x=\pm\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (4) là \(S=\left\{-\sqrt{7};\sqrt{7}\right\}\)
(Trả lời bởi qwerty)
Rút gọn các biểu thức sau:
a. \(2\sqrt{a^2}-5a\) với a < 0; b. \(\sqrt{25a^2}+3a\) với \(a\ge0;\)
c. \(\sqrt{9a^4}+3a^2;\) d. \(5\sqrt{4a^6}-3a^3\) với a < 0.
Thảo luận (1)Hướng dẫn giải