Bài 1. Phương trình quy về phương trình bậc nhất một ẩn

Thực hành 3 (SGK Chân trời sáng tạo trang 8)

Hướng dẫn giải

a) \(\frac{5}{{x + 7}} = \frac{{ - 14}}{{x - 5}}\)

Điều kiện xác định: \(x + 7 \ne 0\) và \(x - 5 \ne 0\)

khi \(x \ne  - 7\) và \(x \ne 5\).

Vậy điều kiện xác định của phương trình là \(x \ne  - 7\) và \(x \ne 5\).

b) \(\frac{3}{{3x - 2}} = \frac{x}{{x + 2}} - 1\)

Điều kiện xác định: \(3x - 2 \ne 0\) và \(x + 2 \ne 0\)

khi \(x \ne \frac{2}{3}\) và \(x \ne  - 2\).

Vậy điều kiện xác định của phương trình là \(x \ne \frac{2}{3}\) và \(x \ne  - 2\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Chân trời sáng tạo trang 7)

Hướng dẫn giải

a)

\(\begin{array}{l}2x + \frac{1}{{x - 2}} - 4 = \frac{1}{{x - 2}}\,\,\\\frac{{2x(x - 2)}}{{x - 2}} + \frac{1}{{x - 2}} - \frac{{4(x - 2)}}{{x - 2}} = \frac{1}{{x - 2}}\\\frac{{2x(x - 2) + 1 - 4(x - 2)}}{{x - 2}} = \frac{1}{{x - 2}}\\\frac{{2{x^2} - 4x + 1 - 4x + 8}}{{x - 2}} = \frac{1}{{x - 2}}\\\frac{{2{x^2} - 8x + 8}}{{x - 2}} = 0\\\frac{{2({x^2} - 4x + 4)}}{{x - 2}} = 0\\\frac{{2{{(x - 2)}^2}}}{{x - 2}} = 0\end{array}\)

Nếu \(x - 2 = 0\) thì phương trình vô nghĩa.

Nếu \(x - 2 \ne 0\) suy ra \(x \ne 2\) thì phương trình trở thành:

\(\begin{array}{l}2(x - 2) = 0\\2x - 4 = 0\end{array}\)

Vậy để biến đổi phương trình (1) về phương trình (2) thì \(x \ne 2\).

b) Thay \(x = 2\) vào phương trình (1) ta được:

\(\begin{array}{l}2.2 + \frac{1}{{2 - 2}} - 4 = \frac{1}{{2 - 2}}\,\,\\0 + \frac{1}{0} - 4 = \frac{1}{0}\end{array}\)

Điều này là vô lí nên \(x = 2\) không phải là nghiệm của phương trình (1).

c) Thay \(x = 2\) vào phương trình (2) ta được:

\(\begin{array}{l}2.2 - 4 = 0\\4 - 4 = 0\\0 = 0\end{array}\)

Điều này luôn đúng nên \(x = 2\) là nghiệm của phương trình (2).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 1 (SGK Chân trời sáng tạo trang 9)

Hướng dẫn giải

a) \(5x(2x - 3) = 0\)

\(5x = 0\) hoặc \(2x - 3 = 0\)

\(x = 0\) hoặc \(x = \frac{3}{2}\).

Vậy nghiệm của phương trình là \(x = 0\) và \(x = \frac{3}{2}\).

b) \((2x - 5)(3x + 6) = 0\)

\(2x - 5 = 0\) hoặc \(3x + 6 = 0\)

\(x = \frac{5}{2}\) hoặc \(x =  - 2\).

Vậy nghiệm của phương trình là \(x = \frac{5}{2}\) và \(x =  - 2\).

c) \(\left( {\frac{2}{3}x - 1} \right)\left( {\frac{1}{2}x + 3} \right) = 0\)

\(\frac{2}{3}x - 1 = 0\) hoặc \(\frac{1}{2}x + 3 = 0\)

\(x = \frac{3}{2}\) hoặc \(x =  - 6\).

Vậy nghiệm của phương trình là \(x = \frac{3}{2}\) và \(x =  - 6\).

d) \((2,5t - 7,5)(0,2t + 5) = 0\)

\(2,5t - 7,5 = 0\) hoặc \(0,2t + 5 = 0\)

\(x = 3\) hoặc \(x =  - 25\).

Vậy nghiệm của phương trình là \(x = 3\) và \(x =  - 25\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Chân trời sáng tạo trang 8)

Hướng dẫn giải

a) Điều kiện xác định: \(x - 2 \ne 0\) và \(x + 1 \ne 0\)

khi    \(x \ne 2\) và \(x \ne  - 1\).

Vậy điều kiện xác định của phương trình là \(x \ne 2\) và \(x \ne  - 1\).

b) \(\frac{x}{{x - 2}} = \frac{1}{{x + 1}} + 1\)

Quy đồng vế phải với mẫu thức chung là \(x + 1\): \(\frac{x}{{x - 2}} = \frac{{x + 2}}{{x + 1}}\)

Quy đồng cả hai vế với mẫu thức chung là \((x - 2)(x + 1)\): \(\frac{{x(x + 1)}}{{(x - 2)(x + 1)}} = \frac{{(x + 2)(x - 2)}}{{(x + 1)(x - 2)}}\)

Hai phân thức bằng nhau có cùng mẫu thì tử bằng nhau.\({x^2} + x = {x^2} - 4\)

Giải phương trình ta được \(x =  - 4\)

c) Thay \(x =  - 4\) vào phương trình, ta được:

\(\begin{array}{l}\frac{{ - 4}}{{( - 4) - 2}} = \frac{1}{{( - 4) + 1}} + 1\\\frac{{ - 4}}{{ - 6}} = \frac{1}{{ - 3}} + 1\\\frac{2}{3} = \frac{2}{3}\\\frac{2}{3} - \frac{2}{3} = 0\\0 = 0\end{array}\)

Điều này luôn đúng nên \(x =  - 4\) là nghiệm của phương trình đã cho.

Vậy \(x =  - 4\) là nghiệm của phương trình đã cho.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 2 (SGK Chân trời sáng tạo trang 9)

Hướng dẫn giải

Gọi tốc độ lúc đi của ô tô là \(x\) (km/h), \(x > 0\).

Thời gian lúc đi của ô tô là \(\frac{{120}}{x}\) (giờ).

Tốc độ lúc về của ô tô là \(x + 20\% x = 1,2x\) (km/h).

Thời gian lúc về của ô tô là \(\frac{{120}}{{1,2x}}\) (giờ).

Đổi 4 giờ 24 phút = \(\frac{{22}}{5}\) giờ.

Vì tổng thời gian đi và về của ô tô là 4 giờ 24 phút nên ta có phương trình:

\(\begin{array}{l}\frac{{120}}{x} + \frac{{120}}{{1,2x}} = \frac{{22}}{5}\\\frac{{120.6}}{{6x}} + \frac{{120.5}}{{6x}} = \frac{{22.1,2x}}{{6x}}\\720 + 600 = \frac{{132}}{5}x\\x = 50\end{array}\)

Ta thấy \(x = 50\) thỏa mãn điều kiện.

Vậy tốc độ lúc đi của ô tô là 50km/h.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (SGK Chân trời sáng tạo trang 9)

Hướng dẫn giải

a) \(3x(x - 4) + 7(x - 4) = 0\)

\((x - 4)(3x + 7) = 0\)

\(x - 4 = 0\) hoặc \(3x + 7 = 0\)

\(x = 4\) hoặc \(x = \frac{{ - 7}}{3}\).

Vậy nghiệm của phương trình là \(x = 4\) và \(x = \frac{{ - 7}}{3}\).

b) \(5x(x + 6) - 2x - 12 = 0\)

\(5x(x + 6) - 2(x + 6) = 0\)

\((x + 6)(5x - 2) = 0\)

\(x + 6 = 0\) hoặc \(5x - 2 = 0\)

\(x =  - 6\) hoặc \(x = \frac{2}{5}\).

Vậy nghiệm của phương trình là \(x =  - 6\) và \(x = \frac{2}{5}\).

c) \({x^2} - x - (5x - 5) = 0\)

\(x(x - 1) - 5(x - 1) = 0\)

\((x - 1)(x - 5) = 0\)

\(x - 1 = 0\) hoặc \(x - 5 = 0\)

\(x = 1\) hoặc \(x = 5\).

Vậy nghiệm của phương trình là \(x = 1\) và \(x = 5\).

d) \({(3x - 2)^2} - {(x + 6)^2} = 0\)

\(9{x^2} - 12x + 4 - {x^2} - 12x - 36 = 0\)

\(8{x^2} - 24x - 32 = 0\)

\(8({x^2} - 3x - 4) = 0\)

\({x^2} - 4x + x - 4 = 0\)

\(x(x - 4) + (x - 4) = 0\)

\((x + 1)(x - 4) = 0\)

\(x + 1 = 0\) hoặc \(x - 4 = 0\)

\(x =  - 1\) hoặc \(x = 4\).

Vậy nghiệm của phương trình là \(x =  - 1\) và \(x = 4\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

Gọi tốc độ của xe đạp là \(x\) (km/h), \(x > 0\).

Thời gian xe đạp đi quãng đường từ A đến B là \(\frac{{60}}{x}\) (giờ).

Tốc độ của xe máy là \(3x\) (km/h).

Thời gian xe máy đi quãng đường từ A đến B là \(\frac{{60}}{{3x}} = \frac{{20}}{x}\) (giờ).

Đổi 1 giờ 40 phút = \(\frac{5}{3}\) giờ.

Vì xe máy xuất phát sau xe đáp 1 giờ 40 phút và đến sớm hơn xe đạp 1 giờ nên ta có phương trình:

\(\begin{array}{l}\frac{{60}}{x} - \frac{{20}}{x} = \frac{5}{3} + 1\\\frac{{40}}{x} = \frac{8}{3}\\\frac{{40.3}}{{3x}} = \frac{{8x}}{{3x}}\\120 = 8x\\x = 15\end{array}\)

Ta thấy \(x = 15\) thỏa mãn điều kiện \(x > 0\).

Vậy tốc độ của xe đạp là 15km/h; tốc độ của xe máy là 45km/h.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 5 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

Gọi số công nhân dự định tham gia lúc đầu là \(x\) (người), \(x \in {\mathbb{N}^*}\).

Số tiền thưởng dự định mỗi công nhân nhận được là \(\frac{{12\,600\,000}}{x}\) (đồng).

Số công nhận thực tế tham gia là \(80\% x = 0,8x\) (người).

Số tiền thưởng thực tế mỗi công nhân nhận được là \(\frac{{12\,600\,000}}{{0,8x}} = \frac{{15\,750\,000}}{x}\) (đồng).

Vì thực tế mỗi người tham gia hội thảo được nhận thêm 105 000 đồng nên ta có phương trình:

\(\begin{array}{l}\frac{{15\,750\,000}}{x} - \frac{{12\,600\,000}}{x} = 105\,000\\\frac{{3\,150\,000}}{x} = \frac{{105\,000x}}{x}\\3150000 = 105000x\\x = 30\end{array}\)

Ta thấy \(x = 30\) thỏa mãn điều kiện \(x \in {\mathbb{N}^*}\).

Vậy số công nhân dự định tham gia lúc đầu là 30 người.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Chân trời sáng tạo trang 9)

Hướng dẫn giải

a) \(\frac{{x + 5}}{{x - 3}} + 2 = \frac{2}{{x - 3}}\)

Điều kiện xác định: \(x \ne 3\).

Ta có:

\(\begin{array}{l}\frac{{x + 5}}{{x - 3}} + 2 = \frac{2}{{x - 3}}\\\frac{{x + 5}}{{x - 3}} + \frac{{2(x - 3)}}{{x - 3}} = \frac{2}{{x - 3}}\\x + 5 + 2x - 6 = 2\\3x = 3\\x = 1\end{array}\)

Ta thấy \(x = 1\) thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình là \(x = 1\).

b) \(\frac{{3x + 5}}{{x + 1}} + \frac{2}{x} = 3\)

Điều kiện xác định: \(x \ne 0\) và \(x \ne  - 1\).

Ta có:

\(\begin{array}{l}\frac{{3x + 5}}{{x + 1}} + \frac{2}{x} = 3\\\frac{{(3x + 5)x}}{{(x + 1)x}} + \frac{{2(x + 1)}}{{(x + 1)x}} = \frac{{3x(x + 1)}}{{(x + 1)x}}\\3{x^2} + 5x + 2x + 2 = 3{x^2} + 3x\\4x =  - 2\\x = \frac{{ - 1}}{2}\end{array}\)

Ta thấy \(x = \frac{{ - 1}}{2}\) thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình là \(x = \frac{{ - 1}}{2}\).

c) \(\frac{{x + 3}}{{x - 2}} + \frac{{x + 2}}{{x - 3}} = 2\)

Điều kiện xác định: \(x \ne 2\) và \(x \ne 3\).

Ta có:

\(\begin{array}{l}\frac{{x + 3}}{{x - 2}} + \frac{{x + 2}}{{x - 3}} = 2\\\frac{{(x + 3)(x - 3)}}{{(x - 2)(x - 3)}} + \frac{{(x + 2)(x - 2)}}{{(x - 2)(x - 3)}} = \frac{{2(x - 2)(x - 3)}}{{(x - 2)(x - 3)}}\\{x^2} - 9 + {x^2} - 4 = 2{x^2} - 10x + 12\\10x = 25\\x = \frac{5}{2}\end{array}\)

Ta thấy \(x = \frac{5}{2}\) thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình là \(x = \frac{5}{2}\).

d) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{x + 2}} = \frac{{16}}{{{x^2} - 4}}\)

\(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{x + 2}} = \frac{{16}}{{(x - 2)(x + 2)}}\)

Điều kiện xác định: \(x \ne  \pm 2\).

Ta có:

\(\begin{array}{l}\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{x + 2}} = \frac{{16}}{{{x^2} - 4}}\\\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{x + 2}} = \frac{{16}}{{(x - 2)(x + 2)}}\\\frac{{{{(x + 2)}^2}}}{{(x - 2)(x + 2)}} - \frac{{{{(x - 2)}^2}}}{{(x - 2)(x + 2)}} = \frac{{16}}{{(x - 2)(x + 2)}}\\(x + 2 - x + 2)(x + 2 + x - 2) = 16\\4.2x = 16\\x = 2\end{array}\)

Ta thấy \(x = 2\) không thỏa mãn điều kiện xác định.

Vậy phương trình vô nghiệm.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 4 (SGK Chân trời sáng tạo trang 9)

Hướng dẫn giải

a) \(\frac{{x + 6}}{{x + 5}} + \frac{3}{2} = 2\)

Điều kiện xác định: \(x \ne  - 5\).

Ta có:

\(\begin{array}{l}\frac{{x + 6}}{{x + 5}} + \frac{3}{2} = 2\\\frac{{2(x + 6)}}{{2(x + 5)}} + \frac{{3(x + 5)}}{{2(x + 5)}} = \frac{{2.2(x + 5)}}{{2(x + 5)}}\\2x + 12 + 3x + 15 = 4x + 20\\x =  - 7\end{array}\)

Ta thấy: \(x =  - 7\) thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình đã cho là \(x =  - 7\).

b) \(\frac{2}{{x - 2}} - \frac{3}{{x - 3}} = \frac{{3x - 20}}{{(x - 3)(x - 2)}}\)

Điều kiện xác định: \(x \ne 2\) và \(x \ne 3\).

Ta có:

\(\begin{array}{l}\frac{2}{{x - 2}} - \frac{3}{{x - 3}} = \frac{{3x - 20}}{{(x - 3)(x - 2)}}\\\frac{{2(x - 3)}}{{(x - 2)(x - 3)}} - \frac{{3(x - 2)}}{{(x - 2)(x - 3)}} = \frac{{3x - 20}}{{(x - 2)(x - 3)}}\\2x - 6 - 3x + 6 = 3x - 20\\4x = 20\\x = 5\end{array}\)

Ta thấy \(x = 5\) thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình đã cho là \(x = 5\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)