Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương Nguyên Đại Thắng

Xác định phần dư R(x) của phép chia \(P\left(x\right)=x+x^3+x^9+x^{27}+x^{81}\) cho \(x^2-1\)

Nguyễn Việt Lâm
4 tháng 3 2019 lúc 22:41

Giả sử \(P\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(1\right)=a+b\\P\left(-1\right)=-a+b\end{matrix}\right.\)

Mà thay \(x=1\)\(x=-1\) vào \(P\left(x\right)\) ta được \(\left\{{}\begin{matrix}P\left(1\right)=5\\P\left(-1\right)=-5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\-a+b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=5\\b=0\end{matrix}\right.\)

\(\Rightarrow R\left(x\right)=ax+b=5x\)

Nguyễn Thành Trương
5 tháng 3 2019 lúc 13:12

Dư trong phép chia cho $x^2-1$ có bậc cao nhất là bậc nhất.

Gọi thương của phép chia là $Q_{(x)}$ và dư là ax+b, với mọi x ta có: $ x+x^3+x^9+x^{27}+x^{81}=(x^2-1).Q_{(x)}+ax+b$

Với $x =1$ thì $5=a+b.$

Với $x=-1$ thì $-5=-a+b.$

Từ đó $a=5,b=0$ .Dư của phép chia là 5x.


Các câu hỏi tương tự
Trương Nguyên Đại Thắng
Xem chi tiết
Trương Nguyên Đại Thắng
Xem chi tiết
Thùy Linh
Xem chi tiết
Nấm Chanel
Xem chi tiết
Nấm Chanel
Xem chi tiết
Nhã Yến
Xem chi tiết
Agami Raito
Xem chi tiết
Trương Nguyên Đại Thắng
Xem chi tiết
ghdoes
Xem chi tiết