Tìm max, min của hàm số
a) \(y=\sqrt{3}sinx+cosx\)
b) \(y=sin2x-cos2x\)
c) \(y=3sinx+4cosx\)
Tìm min, max : y=\(\dfrac{2}{\sqrt{3}sin2x+cos2x}\)
Tìm m để hàm số \(y=\sqrt{\dfrac{sin2x-cos2x+m-1}{6\left(cos^4x+sin^4x\right)+cos8x+7-5m}}\) xác định với mọi số thực x
Tìm max, min của HSLG
a)y=3+|4-3sinx|
b)y=3-2\(\left|sin2x-\frac{\pi}{3}\right|\)
Giải các phương trình sau:
a) √3.sin2x - cos2x + 1 = 0
b) 3sin4x + 4cos4x = 1
c) sin3x - √3.cos3x = 2cos5x
d) sinx(sinx + 2cosx) = 2
e) √3(sin2x + cos7x) = sin7x - cos2x
Cho 3sin3x-3cos2x+4sinx-cos2x+2=0 (1)
Và cos2x+3cosx(sin2x-8sinx)=0 (2).
Tìm nghiệm của (1) đồng thời là nghiệm của (2)
Cho 3sin3x-3cos2x+4sinx-cos2x+2=0 (1)
Và cos2x+3cosx(sin2x-8sinx)=0 (2).
Tìm nghiệm của (1) đồng thời là nghiệm của (2)
tìm tập xác định của hàm số sau: \(\dfrac{1-2sinx}{cos2x}\)
dùng công thức biến đổi tổng thành tích , giải các phương trình sau : a) \(\cos3x=\sin2x\) ; b) \(\sin\left(x-120^o\right)-\cos2x=0\)