Đặt \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
\(P=\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\right)\)
\(P\ge\frac{1}{2}.6\sqrt[6]{\frac{x^2y^2z^2}{x^2y^2z^2}}=3\)
\(P_{min}=3\) khi \(x=y=z\) hay \(a=b=c\Rightarrow\) tam giác ABC đều