\(f(x) = \begin{cases} \dfrac{x^2-6x+8}{\sqrt{3x+2}-2} \ khi \ x < 2 \\ \dfrac{x+8}{x-1} \ khi \ x \geq 2 \\\end{cases}
tại x_0 =2.\) Xét tính liên tục của hàm số:
a) f(x) = { √x -1/x2-1 khi x≠1 và 2 khi x=1 } (x0 = 1)
b) f(x) = { x3+8/4x+8 khi x≠-2 và 3 khi x=-2 } (x0 = -2)
c) f (x) = { x3-x2-x+1/x2-3x+2 khi x≠1 và 1 khi x=1 } tại x0 = 1
d) f(x) = { x3+x+2/x3+1 khi x≠-1 và 4/3 khi x=1 } tại x0 = -1
1/ Xét tính liên tục của hàm số tại một điểm:
a) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-4}{x^2+x-2};x\ne2\\2x+1;x=2\end{matrix}\right.\) tại \(x_0=2\)
b) \(f\left(x\right)=\left\{{}\begin{matrix}\left(x+3\right)^3-27;x>0\\x^3+27;x\le0\end{matrix}\right.\) tại \(x_0=0\)
c) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^3-6x^2-x+6}{x-1};x>1\\3x+5;x\le1\end{matrix}\right.\) tại \(x_0=1\)
d) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{3x+10}-x-4}{x+2};x\ne-2\\-\dfrac{1}{4};x=-2\end{matrix}\right.\) tại \(x_0=-2\)
2/ Tìm \(m\) để hàm số sau liên tục tại điểm đã chỉ ra:
a) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{\sqrt{x+3}-2};x\ne1\\mx+2;x=1\end{matrix}\right.\) tại \(x_0=1\)
b) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt[3]{2x^2=9}-3}{2x-6};x\ne3\\m;x=3\end{matrix}\right.\) tại \(x_0=3\)
\(\frac{x^2-4}{x+2}\) khi x\(\ne\)-2
-4 khi x=-2
Xét tính liên tục của hàm số tại x=2?
2. Cho hàm số f(x):
\(\frac{x-5}{\sqrt{2x-1\:}-3}\) khi x>5
(X-5)^2+3 khi x\(\le\)5
Xét tính liên tục của hàm số tại x=5?
Xét tính liên tục của hàm số sau:
\(f(x) = \begin{cases} \dfrac{\sqrt{3x+10}-x-4}{x+2}, khi \ x \in [-\dfrac{10}{3};+\infty) \\ -\dfrac{1}{4}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi \ x=-2\end{cases}\) tại điểm x = -2
Tìm m để các hàm số f(x) = \(\left\{{}\begin{matrix}\dfrac{\sqrt{x+1}-1}{2x}khix>0\\2x^2+3mx+1khix\le0\end{matrix}\right.\) liên tục tại x=0
1/ Xét tính liên tục của hàm số tại một điểm:
a) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-4}{x^2+x-2},x\ne2\\2x+1,x=2\end{matrix}\right.\left(x_0=2\right)}\)
cho f(x) = \(\dfrac{2\sqrt{x+1}-x-2}{x^2}\) (x≠0) và 2-9m (x=0) . tìm m để hàm số liên tục tại \(x_0\)=0