Giải phương trình: \(\sqrt{x}\) + \(\sqrt{1-x}\) = 1 + \(\dfrac{2}{3}\sqrt{x-x^2}\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
Giải phương trình:
1.\(x^2-x+2-2\sqrt{x^2-x+1}=0\)
2.\(x+\dfrac{1}{x-2}=\dfrac{x-1}{x-2}\)
Tìm điều kiện xác định của bất phương trình:
\(\dfrac{\sqrt{\text{x - 2}}}{\text{x}+1}-\sqrt{\text{4 - x}}\ge0\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\left(y+1\right)^2+y\sqrt{y^2+1}=x+\dfrac{3}{2}\\x+\sqrt{x^2-2x+5}=1+2\sqrt{2x-4y+2}\end{matrix}\right.\)
giải phương trình
\(\dfrac{4}{x}\) + \(\sqrt{x+\dfrac{1}{x}}\) = x + \(\sqrt{2x-\dfrac{5}{x}}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\left(x^2-1\right)^2+3=\dfrac{6x^5y}{x^2+2}\\3y-x=\sqrt{\dfrac{4x-3x^2y-9xy^2}{x+3y}}\end{matrix}\right.\)