1)\(\left\{{}\begin{matrix}1+x^3y^3=19x^3\\y\left(1+xy\right)=-6x^2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}\sqrt{x-4}+\sqrt{y-1}=4\\x+y=63\end{matrix}\right.\)
giải hệ pt: \(\left\{{}\begin{matrix}3x+y=\dfrac{1}{x^2}\\3y+x=\dfrac{1}{y^2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x^2+y=3y^2-2\\2y^2+x=3x^2-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x=\dfrac{x^2+2}{y^2}\\3y=\dfrac{y^2+2}{x^2}\end{matrix}\right.\)
giải hệ
\(\left\{{}\begin{matrix}x-3y=\frac{4y}{x}\\y-3x=\frac{4x}{y}\end{matrix}\right.\)
Giải hệ phương trình :\(\left\{{}\begin{matrix}\dfrac{x^2}{y}-3x=4\\\dfrac{y^2}{x}-3y=4\end{matrix}\right.\)
giải hệ
\(\left\{{}\begin{matrix}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{matrix}\right.\)
giải hệ phương trình :
\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\\x^2+y^2-x+y=\dfrac{1}{2}\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{matrix}\right.\)