a) Ta có:\(\left(x^2-4\right)\left(2-4x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\cdot2\cdot\left(1-2x\right)=0\)
mà 2≠0
nên \(\left[{}\begin{matrix}x-2=0\\x+2=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-2;\frac{1}{2}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: x∈{2;3}