\(x^2-2x+y^2+4y+4z^2-4z+6=0\)
\(x^2-2x+1+y^2+4y+4+4z^2-4z+1=0\)
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(2z-1\right)^2=0\)
\(x-1=y-2=2z-1=0\)
\(\left[\begin{array}{nghiempt}x=1\\y=2\\z=\frac{1}{2}\end{array}\right.\)
\(x^2-2x+y^2+4y+4z^2-4z+6=0\)
\(x^2-2x+1+y^2+4y+4+4z^2-4z+1=0\)
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(2z-1\right)^2=0\)
\(x-1=y-2=2z-1=0\)
\(\left[\begin{array}{nghiempt}x=1\\y=2\\z=\frac{1}{2}\end{array}\right.\)
Tìm x,y,z bik
a)\(x^2+4y^2+z^2=2x+12y-4z-14\)
b) \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
tìm x,y,z nguyên sao cho \(x^2+y^2+z^2+6< xy+3x+4z\)
Tìm x,y:
a, 2x2+ y2+ 2xy-10x -4y+13=0
b, x2+ y2+z2 -4x+6y -2z+14=0
c, 2x2+ y2+ 2z2 + 2xy + 2xz + 2yz + 2x - 4z+ 5=0
Tìm x,y thõa mãn
\(x^2+4y^2+z^2=2x+12y-4z-14\)
Bài 1: Tìm x, y, z biết:
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
Tìm x,y,z thỏa mãn
9x2+y2+2z2-18x+4z-6y+20=0
tìm x,y,z thỏa mãn phương trình \(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
cho 2x=3y,5y=4z và x\(^2\) -3y\(^2\)+2z\(^2\)=342.Tìm x,y,z
Tìm x,y,z thỏa mãn phương trình sau:
9x2+y2+2z2-18x+4z-6y+20=0