Bài làm:
(x - 2013)2014 = 1
⇔ x - 2013 = \(\sqrt[2014]{1}\)
⇔ x - 2013 = 1
⇒ x = 2014
Vậy x= 2014.
(x - 2013)2014 = 1
\(\Rightarrow\left[{}\begin{matrix}\left(x-2013\right)^{2014}=1^{2014}\\\left(x-2013\right)^{2014}=\left(-1\right)^{2014}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-2013=1\\x-2013=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2014\\x=2012\end{matrix}\right.\)
(x-2003)2014=1
(x-2003)2004=12004
x-2003 =1
x =1+2003
x = 2004
Vậy x=2004