Bài 8 Tổng và hiệu hai lập phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Với hai số \(a,b\) bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức lập phương của một tổng để tính \({a^3} + \left( { - {b^3}} \right)\).

Từ đó rút ra liên hệ giữa \({a^3} - {b^3}\) và \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\). 

\({a^3} + \left( { - {b^3}} \right) = \left[ {a + \left( { - b} \right)} \right]\left[ {{a^2} - a.\left( { - b} \right) + {{\left( { - b} \right)}^2}} \right] = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

Từ đó ta có \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
Xem chi tiết