Ta có \(x+y+z+t\ge4\sqrt[4]{xyzt}\Rightarrow xyzt\le1\)
Áp dụng BĐT: \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{2}{\sqrt{ab}+1}\)
\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\ge\frac{2}{xy+1}+\frac{2}{zt+1}=2\left(\frac{1}{xy+1}+\frac{1}{zt+1}\right)\)
\(A\ge2.\left(\frac{2}{\sqrt{xyzt}+1}\right)\ge\frac{2.2}{1+1}=2\)
\(\Rightarrow A_{max}=2\) khi \(x=y=z=t=1\)