\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Rightarrow x+y\le\sqrt{2}\Rightarrow\frac{1}{x+y}\ge\frac{\sqrt{2}}{2}\)
\(P=x+\frac{1}{2x}+y+\frac{1}{2y}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow P\ge2\sqrt{\frac{x}{2x}}+2\sqrt{\frac{y}{2y}}+\frac{1}{2}\left(\frac{4}{x+y}\right)\ge2\sqrt{2}+\sqrt{2}=3\sqrt{2}\)
\(\Rightarrow P_{min}=3\sqrt{2}\)
Dấu "=" khi \(x=y=\frac{1}{\sqrt{2}}\)